University of Waterloo Department of Electrical and Computer Engineering

E&CE-316 – Introduction to Probability Theory <u>Midterm Examination</u> June 9, 2006

Instructors: A. K. Khandani Time allowed: 1.5 hours.

Closed book. One sheet of $8\frac{1}{2} \times 11$ review sheet (one side) allowed. Answer all three questions. The parts with * sign are more difficult.

Questions and parts within questions are of equal value.

1. Assume that 5 items are in an urn, numbered 1,2,3,4,5. Suppose that 2 items are white and 3 items are black.

1.1 (mark=2.5) Compute the probability that in a draw of 2 items (without replacement) we obtain 2 white items.

Solution:
$$\frac{\binom{2}{2}}{\binom{5}{2}} = 0.1.$$

1.2 (mark=2.5) Compute the probability that in a draw of 2 items (without replacement) we obtain 2 black items.

Solution:
$$\frac{\binom{3}{2}}{\binom{5}{2}} = 0.3.$$

1.3 (mark=2.5) Compute the probability that in a draw of 2 items (without replacement) we obtain one white and one black item.

Solution:
$$\frac{\binom{2}{1}\binom{3}{1}}{\binom{5}{2}} = 0.6.$$

1.4 (mark=2.5) Compute the probability that in a draw of 2 items (with replacement) we obtain 2 white items.

Solution: $(\frac{2}{5})^2$.

2. In a factory, units are manufactured by machines H_1, H_2, H_3 in the proportions 25:35:40. The percentages 5%, 4% and 2%, respectively, of the manufactured units are defective. The units are mixed and sent to the customers.

1

2.1 (mark=2.5) Find the probability that a randomly chosen unit is defective.

Solution: Let us define D as the event that the unit is defective. Using Bayes's Theorem we have:

 $p(D) = p(D/H_1)p(H_1) + p(D/H_2)p(H_2) + p(D/H_3)p(H_3) = 0.05 \times 0.25 + 0.04 \times 0.35 + 0.02 \times 0.4 = 0.0345.$

2.2 (mark=2.5) Suppose that a customer discovers that a certain unit is defective. What is the probability that it has been manufactured by machine H_1 ?

Solution: $p(H_1/D) = \frac{p(H_1D)}{p(D)} = \frac{p(H_1)p(D/H_1)}{p(D)} = \frac{0.25 \times 0.05}{0.0345} = 0.362.$

2.3 (mark=2.5) Suppose that a customer buys units until he/she discovers a defective item and then stops buying that product. What is the probability that the customer buys more than 5 items before discovering a defective item.

Solution: Let us define X as the random variable, denoting the number of items the customer buys, before discovering a defective item. Obviously, X has Geometric distribution with parameter p = 1 - p(D) = 0.9655. We have:

$$p(X > 5) = \sum_{k=6}^{\infty} p^k (1 - p) = p^6 = 0.81.$$

2.4 (mark=2.5) *Suppose that a customer discovers that a certain unit is defective and we know that it is not produced by H_2 , then what is the probability that it has been manufactured by machine H_1 ?

Solution: This probability can be expressed as $p(H_1/D, H_2^c)$. We have $p(H_1|D, H_2^c) = \frac{p(H_1H_2^cD)}{p(DH_2^c)} = \frac{p(H_1D)}{p(DH_2^c)} = \frac{p(H_1D)}{p(D(H_1\bigcup H_3))} = \frac{p(H_1D)}{p(D(H_1\bigcup H_3))} = \frac{p(H_1D)}{p(DH_1\bigcup DH_3)} = \frac{p(H_1D)}{p(H_1D) + p(H_3D)} = \frac{0.25 \times 0.05}{0.25 \times 0.05 + 0.4 \times 0.02} = 0.61.$

3. We know that there are $\binom{n+r-1}{r-1}$ distinct integer-valued vectors (x_1,x_2,\ldots,x_r) satisfying:

$$x_1 + x_2 + \dots + x_r = n$$
 $x_i \ge 0, i = 1, \dots, r$

3.1 (mark=5) What is the number of distinct integer-valued vectors (x_1, x_2, \ldots, x_5) satisfying:

$$x_1 + x_2 + \dots + x_5 = 15$$
 $x_i \ge 2, i = 1, \dots, 5$

Solution: Defining $y_i = x_i - 2$, the above equation can be re-written as follows:

$$y_1 + y_2 + \dots + y_5 = 5$$
 $y_i \ge 0, i = 1, \dots, 5.$

Hence, the number of solutions to the primary equation is equal to the number of solutions to the above equation, which is $\binom{5+5-1}{5-1} = \binom{9}{4}$.

3.2 (mark=5) *What is the number of distinct integer-valued vectors (x_1, x_2, \ldots, x_5) satisfying:

$$x_1 + x_2 + \dots + x_5 = 13$$
 $4 > x_i > 1, i = 1, \dots, 5$

Solution: Again, defining $y_i = x_i - 2$, the above equation can be written as

$$y_1 + y_2 + \dots + y_5 = 3$$
 $2 > y_i > -1, i = 1, \dots, 5.$

or equivalently,

$$y_1 + y_2 + \dots + y_5 = 3$$
 $y_i = 0 \text{ or } 1, , i = 1, \dots, 5.$

Therefore, the problem is simplified to finding the total number of ways that 3 ones and 2 zeros can be put in 5 spots, which is $\binom{5}{3}$.