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1 Combinatorial Analysis

1.1 Introduction

This chapter deals with finding effective methods for counting the number of ways that things can occur.
In fact, many problems in probability theory can be solved simply by counting the number of different ways
that a certain event can occur. The mathematical theory of counting is formally known as combinatorial
analysis.

1.2 The Basic Principle of Counting

Number of ways to perform two procedures in succession: If we are going to perform two proce-
dures in succession and if the first procedure can be performed in n1 ways, and if, for each of these ways,
the second procedure can be performed in n2 ways, then there are n1n2 ways in which the two procedures
can be performed successively.

Number of ways to perform several procedures in succession: Similarly, if we are performing r
procedures successively, the ith procedure capable of being performed in ni ways regardless of the ways in
which the first (i − 1) procedures were performed, then the r procedures can be performed in n1n2 · · ·nr

different ways.

1.3 Permutations

Number of ways to order n distinct elements: Based on the reasoning mentioned earlier, if we have
n distinct elements, there would be n× (n− 1)× (n− 2)× · · · × 2× 1 ways of ordering them. We denote
this quantity by n! and in words by n factorial.
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Number of ways to order n elements (some of which are not distinct): The number of distinct
orderings of n objects, n1 of which are type 1, n2 of which are of type 2, . . ., and nr of which are of type
r, is equal to: (

n

n1, n2, . . . , nr

)
=

n!

n1!n2! · · ·nr!
, n1 + n2 + . . . nr = n

Number of ways to select r elements from n elements (order is important): The total number
of ways of ordering r elements, chosen from n distinct elements, is equal to:

n(n− 1)(n− 2) · · · (n− r + 1)

This quantity can be also expressed as n!/(n− r)!. This is denoted by Pn
r , the number of permutations of

n things taken r at a time.

1.4 Combinations

Number of ways to select r elements from n distinct elements (order is not important): It is
possible to choose, without regard of order, r elements from n distinct elements in

n!

r!(n− r)!

different ways. This is an important quantity in combinatorics and will be denoted by

(
n

r

)
. It is also

called a Binomial Coefficient and is sometimes written as Cr
n.
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Note that, (
n

0

)
=

(
n

n

)
= 1

and (
n

i

)
= 0, for i < 0, and for i > n

A useful combinatorial identity is,(
n

r

)
=

(
n− 1

r − 1

)
+

(
n− 1

r

)
, 1 ≤ r ≤ n

This identity may be proved by the following combinatorial argument. Consider a group of n objects and

fix attention on some particular one of these objects (call it object 1). Now, there are

(
n− 1

r − 1

)
groups

of size r that contain object 1 (since each such group is formed by selecting r − 1 objects from the n − 1

objects which are those remaining after excluding object 1). Also, there are

(
n− 1

r

)
groups of size r that

do not contain object 1 (since each such group is formed by selecting r objects from the n − 1 objects

which are those remaining after excluding object 1). Note that there is a total of

(
n

r

)
groups of size r,

and a given group among these either contains or does not contain object 1. This means that the total
number of possible ways to select r objects out of n is equal to the number of ways to select r objects from

n when object 1 is included (total of

(
n− 1

r − 1

)
groups) plus the number of ways to select r object from n

when object 1 is not included (total of

(
n− 1

r

)
groups). This results in the above identity.

We also have, (
n

r

)
=

(
n

n− r

)
Binomial Theorem is as follows:

(X + Y )n =
n∑

k=0

(
n

k

)
XkY n−k

Combinatorial Proof of the Binomial Theorem: Consider the product

(X1 + Y1)(X2 + Y2) . . . (Xn + Yn)

Its expansion consists of the sum of 2n terms, each term being the product of n factors. Furthermore, each
of the 2n terms in the sum will contain as a factor either Xi or Yi for each i = 1, 2, ..., n. For example,

(X1 + Y1)(X2 + Y2) = X1X2 +X1Y2 + Y1X2 + Y1Y2

Now, how many of the 2n terms in the sum will have as factors k of the Xi’s and (n− k) of the Yi’s? As
each term consisting of k of the Xi’s and (n − k) of the Yi’s corresponds to a choice of a group of size k

from the n values X1, X2, ..., Xn, there are

(
n

k

)
such terms. Thus, letting Xi = X, Yi = Y , i = 1, ..., n, we

get the desired result.
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1.5 Multinomial Coefficients

Multinomial Theorem is as follows:

(x1 + x2 + · · ·+ xr)
n =

∑(
n

n1, n2 . . . , nr

)
xn1
1 xn2

2 · · ·xnr
r

where n1 + n2 + · · ·+ nr = n, and (
n

n1, n2 . . . , nr

)
=

n!

n1!n2! · · ·nr!

and the summation is over all possible sets of integers (n1, n2, . . . , nr) such that
(i) 0 ≤ ni ≤ n, i = 1, 2, . . . , r and
(ii) n1 + n2 + · · ·+ nr = n.

1.6 The Number of Integer Solutions of Equations

The Number of Positive Integer Solutions of Equations: There are

(
n− 1

r − 1

)
distinct positive integer-

valued vectors (x1, x2, . . . , xr) satisfying:

x1 + x2 + · · ·+ xr = n xi > 0, i = 1, . . . , r

Proof: Refer to problem 7.

The Number of Nonnegative Integer Solutions of Equations:
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There are

(
n+ r − 1

r − 1

)
distinct nonnegative integer-valued vectors (x1, x2, . . . , xr) satisfying:

x1 + x2 + · · ·+ xr = n xi ≥ 0, i = 1, . . . , r

Proof: Refer to problem 8.
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1.7 Some Solved Problems

1. Twenty books are to be arranged on a shelf; eleven on travel, five on cooking, and four on gardening.
The books in each category are to be grouped together. How many arrangements are possible?

Solution: We have 11! arrangements for the travel, 5! arrangements for the cooking, and 4! arrange-
ments for the gardening books. We can also permute the three different classes of books in 3! ways.
Thus

total = (11!)(5!)(4!)(3!)

2. A sandwich in a vending machine costs $0.85. In how many ways can a customer put in two quarters,
three dimes, and a nickel?

Solution: We know that the number of ways to arrange n objects, n1 of one kind, n2 of a second

kind, . . ., and nr of an rth kind,
r∑

i=1

ni = n, is

n!

n1!n2! · · ·nr!

Viewed in this context, an admissible coin sequence is a permutation of n = n1+n2+n3 = 6 objects,
where

n1 = number of quarters = 2

n2 = number of dimes = 3

n3 = number of nickels = 1

It follows that the number of different ways the coins can be put into the machine is 60:

n!

n1!n2!n3!
=

6!

2!3!1!
= 60

3. Twelve people belong to a club. How many ways can they pick a president, vice-president, secretary,
and treasurer?

Solution: We think of filling the offices one at a time. There are 12 people we can pick for president.
Having made the first choice, there are always 11 possibilities for vice-president, 10 for secretary, and
9 for treasurer. The Multiplication rule states that, if m experiments are performed in order and that,
no matter what the outcomes of experiments 1, ..., k− 1 are, experiment k has nk possible outcomes,
then the total number of outcomes is n1 · n2 · · ·nm. So by the multiplication rule, the answer is

12

P
· 11
V

· 10
S

· 9
T

4. A committee of three consisting of two men and one woman is to be chosen from six men and three
women. How many different committees can be chosen?

Solution: The two men can be chosen in C6
2 ways. The one woman can be chosen in C3

1 ways. Thus
the total number of different possible committees is

(C6
2 )(C

3
1 ) =

(
6

2

)(
3

1

)
=

6!

4!2!
· 3!
2!

= 45
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5. In a class of 70 students, how many ways can the students be grouped so that there are 12 students
in each of the first five groups and 10 students in the last one?

Solution: There are C70
12 choices for the first group. Having chosen 12 for the first group, there

remain C58
12 choices for the second group and so on. By the multiplication principle, the total is

total =

(
70

12

)
.

(
58

12

)
.

(
46

12

)
.

(
34

12

)
.

(
22

12

)
.

(
10

10

)

=
70!

58!12!
· 58!

46!12!
· 46!

34!12!
· 34!

22!12!
· 22!

10!12!
· 10!

0!10!

=
70!

(12!)510!

6. A house has 12 rooms. We want to paint 4 yellow, 3 purple, and 5 red. In how many ways can this
be done?

Solution: To generate all the possibilities, we can first decide the order in which the rooms will be
painted, which can be done in 12! ways, then paint the first 4 on the list yellow, the next 3 purple,
and the last 5 red. One example is

9

Y

6

Y

11

Y

1

Y

8

P

2

P

10

P

5

R

3

R

7

R

12

R

4

R

Now, the first four choices can be rearranged in 4! ways without affecting the outcome, the middle
three in 3! ways, and the last five in 5! ways. Invoking the multiplication rule, we see that in a list of
the 12! possible permutations each possible painting thus appears 4!3!5! times. Hence, the number
of possible paintings is

12!

4!3!5!
=

12 · 11 · 10 · 9 · 8 · 7 · 6
1 · 2 · 3 · 1 · 2 · 3 · 4

= 27720

Another way of getting the last answer is to first pick 4 of 12 rooms to be painted yellow, which can
be done in C12

4 ways, and then pick 3 of the remaining 8 rooms to be painted purple, which can be
done in C8

3 ways. (The 5 unchosen rooms will be painted red.) This is the same answer since

C12
4 C8

3 =
12!

4!8!
· 8!

3!5!
=

12!

4!3!5!

7. How many ways can we divide n indistinguishable balls into r distinguishable groups in such a way
that there is at least one ball per group?

Solution: To solve this problem we imagine a line of n white balls and r− 1 pieces of cardboard to
place between them to indicate the boundaries of the groups. An example with n = 14 and r = 6
would be

ooo|o|oo|oooo|ooo|o

Since we must pick r − 1 of the n− 1 spaces to put our cardboard dividers into, there are

(
n− 1

r − 1

)
possibilities.
When the groups can have size 0, the last scheme breaks down and we need to look at things in a
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different way. We imagine having n white balls (w’s) and r− 1 black balls (b’s) that will indicate the
boundaries between groups. An example with n = 9, r = 6 would be

w w b b w w w w b w b w w b

which corresponds to groups of size n1 = 2, n2 = 0, n3 = 4, n4 = 1, n5 = 2, and n6 = 0. Each
possible division of n indistinguishable balls into r boxes corresponds to one arrangement of the n
white balls and r− 1 black balls, which is in turn the same as the number of ways of getting n heads

and r − 1 tails in n+ r − 1 tosses, so there are

(
n+ r − 1

r − 1

)
outcomes.

8. Show that there are

(
n+ r − 1

n

)
distinct nonnegative integer-valued vectors with components (x1, x2, . . . , xr)

satisfying
x1 + x2 + . . .+ xr = n

Solution: Consider a vector consisting of n ones and (r − 1) zeros. To each permutation of this
vector we correspond a solution of the above equation, namely, the solution where x1 equals the
number of ones to the left of the first zero, x2 equals the number of ones between the first and
second zeros, x3 equals the number of ones between the second and third zeros, and so on until xr,
which equals the number of ones to the right of the last zero. For instance, if n =6, r =4, then
the vector (1,1,0,0,1,1,1,0,1) corresponds to the solution x1 =2, x2 =0, x3 =3, x4 =1. It is easy
to see that this correspondence between permutations of a vector of n ones and (r − 1) zeros and
solutions of the above equation is a one-to-one correspondence. The result now follows because there

are
(n+ r − 1)!

n!(r − 1)!
permutations of a vector of n ones and (r − 1) zeros. Try to relate this problem to

the previous problem.

9. Show that (
n

1

)
+

(
n

3

)
+ · · · =

(
n

0

)
+

(
n

2

)
+ · · ·

for any n.

Solution: Consider the expansion of (x− y)n:

(x− y)n =
n∑

k=0

(
n

k

)
xk(−y)n−k

Let x = y =1. Then x− y =0, and the previous equation reduces to

0 =
n∑

k=0

(
n

k

)
(−1)n−k

which can be written (
n

0

)
+

(
n

2

)
+ · · · =

(
n

1

)
+

(
n

3

)
+ · · ·

10. Prove that (
n

1

)
+ 2

(
n

2

)
+ · · ·+ n

(
n

n

)
= n2n−1
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Solution: This time we begin with the expansion of (1 + x)n:

(1 + x)n =
n∑

k=0

(
n

k

)
xk(1)n−k

Differentiating both sides of the previous equation with respect to x gives

n(1 + x)n−1 =
n∑

k=0

(
n

k

)
kxk−1

Now, let x =1. This simplifies the left-hand side of the previous equation to n2n−1, while the
right-hand side reduces to

n∑
k=0

k

(
n

k

)
=

(
n

1

)
+ 2

(
n

2

)
+ · · ·+ n

(
n

n

)
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2 Axioms of Probability

2.1 Introduction

In this chapter we introduce the concept of the probability of an event and then show how these probabilities
can be computed in certain situations. This is based on defining the concept of the sample space. Consider
an experiment whose outcome is not predictable with certainty. However, although the outcome of the
experiment will not be known in advance, let us suppose that the set of all possible outcomes is known.
This set of all possible outcomes of an experiment is known as the sample space of the experiment.

2.2 Sample Space and Events

Experiment: An experiment is a procedure which results in an outcome. In general, the outcome of an
experiment depends on the conditions under which the experiment is performed.

Deterministic Experiment: In a deterministic experiment, the observed result (outcome) is not subject
to chance. This means that if we repeat a deterministic experiment under exactly the same conditions, we
will get the same result.

Random Experiment: In a random experiment, the outcome is subject to chance. This means that if
the experiment is repeated, the outcome may be different from time to time.

Statistical Regularity: Suppose that a random experiment is repeated for a large number of times.
We say that the experiment has statistical regularity if the fraction of times that a particular event E is
observed tends to some limit.

Note: In this course, we consider only experiments which are repeatable and the outcomes of the experi-
ment exhibit statistical regularity.

Sample Space: For any random experiment, we define the sample space S to be the set of all possible
outcomes of the experiment.

Elementary event: An elementary event E is a single element of S corresponding to a particular outcome
of the experiment.

Event: An event is any subset of S (a collection of elementary events or outcomes).
Union of Some Events: The union of events E1, E2, . . . En is defined the event for which at least one of

Eis occurs and denoted by
n∪

i=1

Ei.

Intersection of Some Events: The intersection of events E1, E2, . . . En is defined the event for which

all of Eis occur and denoted by
n∩

i=1

Ei.
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Complement of An Event: Consider an even E. The complement of E (denoted as Ec) is the event
that E does not occur. We have, EEc = ∅, E ∪ Ec = S.

S

EEc

Figure 1: Complement of an event E.

Partitioning of Sample Space: The events F1, F2, . . . , Fn form a partition of S if they are disjoint and
their union is S. This means that,

(i)
n∪

i=1

Fi = S

(ii) FiFj = ∅, i ̸= j

S

F2

F3

Fn

. . .

F1

Figure 2: Partition of the sample space.

If F1, F2, . . . , Fn form a partition of the sample space, then, for any event E ⊂ S, we have,

E =
n∪

i=1

(EFi), where (EFi)(EFj) = ∅, for i ̸= j (1)

Some Properties of Union and Intersection

Commutative laws: E ∪ F = F ∪ E EF = FE
Associative laws: (E ∪ F ) ∪G = E ∪ (F ∪G) (EF )G = E(FG)
Distributive laws: (E ∪ F )G = EG ∪ FG (EF ) ∪G = (E ∪G)(F ∪G)

Note that, E∅ = ∅, ES = E, E ∪ ∅ = E, E ∪ S = S
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S

F2

Fn

F1

S

F2

Fn

F1

EF1

. . .

E

F3

EFn

Figure 3: E =
n∪

i=1

(EFi).

DeMorgan’s laws are as follows (
n∪

i=1

Ei

)c

=
n∩

i=1

Ec
i

(
n∩

i=1

Ei

)c

=
n∪

i=1

Ec
i

Note that F and F c parition the space, i.e., FF c = ∅ and F ∪F c = S, as a result, for any given E we have,

E = EF c ∪ EF, where (EF c)(EF ) = ∅

This is illustrated in Fig. 4.

S

E F

EF EcFEF c

Figure 4: The intersection of events E and F showing E = EF c ∪ EF, where (EF c)(EF ) = ∅ .

2.3 Axioms of Probability

Relative Frequency: Consider a random experiment with a sample space S and let E be a particular
outcome of S. This means that the event (outcome) E is an element of the set S, i.e., E ∈ S. Assume
that the experiment is repeated for n times and the total number of times that the event E has occurred
is equal to n(E). The ratio n(E)/n is called the relative frequency of the event E. Relative frequency of
an event has the property that 0 ≤ n(E)/n ≤ 1, where n(E)/n = 0 if E occurs in none of the n trials and
n(E)/n = 1 if E occurs in all of the n trials.
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Probability: The probability of the event E is defined as,

P (E) = lim
n→∞

n(E)

n
(2)

The probability P (E) of an event E satisfies the following axioms:

(i) 0 ≤ P (E) ≤ 1 .

(ii) P (S) = 1 .

(iii) If E1, E2, . . . are disjoint events, i.e., EiEj = ∅ when i ̸= j, then P

( ∞∪
i=1

Ei

)
=

∞∑
i=1

P (Ei)

As a result of above axioms:
P (∅) = 0

2.4 Some Simple Propositions

The probability P (E) of an event E satisfies the following properties:

(i) P (Ec) = 1− P (E) .

(ii) If E ⊂ F , then P (E) ≤ P (F ) .
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(iii) P (E ∪ F ) = P (E) + P (F )− P (EF ).

(iv) P (E1 ∪ E2 ∪ · · · ∪ En) =
n∑

i=1

P (Ei)−
∑
i1<i2

P (Ei1Ei2) + · · ·

+ (−1)r+1
∑

i1<i2<···ir
P (Ei1Ei2 · · ·Eir) + · · ·+ (−1)n+1P (E1E2 · · ·En)

where the sum (−1)r+1∑
i1<i2<···ir P (Ei1Ei2 · · ·Eir) is over

(
n

r

)
terms.

2.5 Sample Spaces Having Equally Likely Outcomes

For a Sample Space having N equally likely outcomes,

P ({1}) = P ({2}) = · · · = P ({N}) = 1

N

Probability of any event E is

P (E) =
number of points in E

number of points in S
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2.6 Some Solved Problems

1. Let A,B and C be three arbitrary sets in a sample space S. In terms of these sets find set-theoretic
expressions for the following events in terms of A,B and C: (i) Only A occurs, (ii) Both A and B
but not C occur (iii) All three events occur (iv) At least one event occurs (v) At least two events
occur (vi) Exactly one event occurs (vii) Exactly two events occur (viii) No event occurs (ix) Not
more than two of the events occur.

Solution:

(i) ABcCc (ii) ABCc

(iii) ABC (iv) A ∪B ∪ C
(v) (AB) ∪ (AC) ∪ (BC) (vi) (ABcCc) ∪ (BAcCc) ∪ (CAcBc)
(vii) (ABCc) ∪ (ABcC) ∪ (AcBC) (viii) AcBcCc

(ix) (ABC)c = Ac ∪Bc ∪ Cc

2. A three digit number (000 to 999) is chosen at random. Find the probability that exactly one of the
digits in the number is greater than 5. Find the probability that at least one of the digits in the
number is greater than 5.

Solution: One of the digits must be 6, 7, 8 or 9 and the other two must be 0 to 5, inclusive. There
are three ways to choose the digit that will be greater than 5 and 4 ways to fill the position. There
are 6×6 ways of filling the remaining two positions. The total number of points satisfying the criteria
is 3× 4× 6× 6 = 432 points and the probability is .432.

3. A coin is tossed until for the first time the same result appears twice in succession. To every possible
outcome requiring n tosses, attribute a probability of 1/2n−1. Describe the sample space of this
experiment. Find the probability of the events: (i) The experiment stops before the 6 toss. (ii) An
even number of tosses is required.

Solution: Sample space:

probability
HH TT 1/4
HTT THH 1/8
HTHH THTT 1/16
· · · · · · ·

(i) Probability experiment ends before the sixth toss is 2× (1/4 + 1/8 + 1/16 + 1/32) = 15/16.

(ii) Probability experiment ends on an even number of tosses:

2× (
1

4
+

1

16
+ · · ·) = 2× 1/4

1− 1/4
= 2/3

4. A box contains five tags marked with the integers 1 to 5. Three tags are drawn from the box without
replacement. Describe the sample space and the following events: (i) E1 is the sum of the tag numbers
is 12 (ii) E2 corresponds to at least one tag of the tags being a 5 (iii)E1E2 (iv) Repeat the question
if the experiment is with replacement.

Solution: The sample space consists of 3-tuples of distinct integers from 1 to 5 and there are 5×4×3
such points.
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(i) E1 is the set of 3-tuples whose integers add to 12 - there are six such points: (3,4,5) and its
permutations.

(ii) E2 is the set of points containing a 5. For a 5 in the first position, there are 4× 3 ways of filling
the other two positions. As there are 3 ways of placing the 5, the total number of points in E2 is
3× 4× 3 = 36.

(iii) E1E2 = E1.

(iv) The sample space now contains 53 points. E1 consists of the points (5,5,2) and its permutations
(3 points), (5,4,3) and its permutations (6 points) and (4,4,4) . E2 consists of points of the form:
(5,5,5), (5,5,X) where X<5 and its permutations (12 points) and (5,X,Y), both X and Y<5 and their
permutations (48 points). E1E2 consists of the points adding to 12 with at least one 5; namely the
points (5,5,2) and its permutations (3 points) and (5,4,3) and its permutations (6 points).

5. An experiment consists of choosing two people and determining which day of the week their birthday
falls on in the current year. Describe a sample space for this experiment and describe the following
events (i) E1 the birthdays fall on the same day (ii) E2 at least one birthday is on a Friday.

Solution: Without loss of generality assume there is an order in the experiment i.e. the two people
are questioned sequentially. The the sample space consists of the 49 points:

S = {(x, y), x, y = Sunday, Monday, · · ·, Saturday }

where the first coordinate refers to the first person and the second, the second. Then

E1 = {(x, x)}, | E1 |= 7

and
E2 = {(Friday, y), (x,Friday)}, | E2 |= 13.

6. A die is tossed three times. Describe a suitable sample space for this experiment. Describe the
following events and determine the number of points:

(i) A = { exactly two sixes were obtained }
(ii) B = { the sum of the faces showing is 12 }
(iii) C = { all faces show an even number }

Describe also the events AB, AC, ABC.

Solution: The sample space might consist of the 63 points {(i, j, k), 1 ≤ i, j, k ≤ 6} where the ith
coordinate reports the outcome on the ith toss.

(i) A = {2 sixes } and contains points of the form

{(6, 6, 1), (6, 6, 2), · · · (1, 6, 6), · · · (5, 6, 6)}

Clearly | A |= 15.

(ii) B = {sum of faces is 12} and contains points such as

(1, 6, 5), (1, 5, 6), (2, 6, 4), (2, 4, 6), · · ·

and contains, by direct counting, 25 points.

(iii) C = {all faces even} and contains 33 points such as (2, 2, 2), (2, 2, 4), · · ·.
By direct verification, AB = ∅, AC contains six points and ABC = ∅.
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7. Ten people enter an elevator on the ground floor and get off, at random, at one of eight floors above
ground. Describe a suitable sample space and find the probability that exactly one person gets off
on the fifth floor.

Solution: An appropriate sample space for this situation is that of dropping ten balls (people) into
eight cells (floors) which consists of 810 points i.e. ten-tuples with each coordinate place containing
an integer from 1 to 8. Each point is equally likely and the probability that exactly one person
gets off on the fifth floor is the number of points containing one 5 divided by 810. The number of
such points is 10× 79 since the coordinate position containing the 5 can be one of 10, and the other
coordinate positions can contain any of 7 integers (anything but a 5).

8. You are dealt two cards from a standard deck of 52 cards. What is the probability you will obtain a
pair (both cards have the same number or picture on them)? What is the probability the two cards
will have the same suit? (It is assumed the first card is NOT replaced into the deck before the second
card is dealt.)

Solution: There are
(52
2

)
distinct pairs of cards possible (no order). Within a given number (or

picture) card there are
(4
2

)
ways of obtaining a pair. There are 13 such numbers and the total number

of ways of obtaining a pair is 13×
(4
2

)
. The probability is then

P (pair) =

13×
(
4

2

)
(
52

2

) .

By a similar reasoning the probability of obtaining a pair with the same suit is

P (pair with the same suit) =

4×
(
13

2

)
(
52

2

) .

9. Choose a positive integer at random and cube it. What is the probability the last two digits of the
cube are both ones?

Solution: Consider the base 10 expansion of an integer x + y · 10 + z · 102 + · · · (0 ≤ x, y, z ≤ 9),
and cube it to give:

x3 + 3x2y · 10 + 3xy2 · 102 + · · ·

The only digit of the original number is x and the only digit, when cubed gives a 1 in the least
significant position is 1. Thus x = 1. Similarly for the second least significant digit to be a 1 we
must the least significant digit of 3x2y be a 1 and the only value for which this happens, give x = 1
is y = 7. Thus only cubes of numbers ending in 71 gives numbers ending in 11. Thus the probability
of the cube of a randomly chosen integer ending in 11 is approximately .01 (approximately because
we could choose single digit numbers etc.

10. Each of nine balls are placed with equal probability in one of three boxes. Find the probability that:

(a) there will be three balls in each box..
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(b) There will be four balls in one box, three in another and two in the other.

Solution: (a) The sample space contains ordered 9-tuples, each position filled with one of three
integers - total number of points is 39. The number of these points containing 3 ones, 3 twos and 3
threes is (

9

3

)
×
(
6

3

)
×
(
3

3

)
and the probability follows.

(b) Similarly

P (4 in one box, 3 in another and 2 in the other) =

(
9

4

)(
5

3

)(
2

2

)
39

.

11. In a batch of manufactured units, 2% of the units have the wrong weight (and perhaps also the wrong
color), 5% have the wrong color (and perhaps also the wrong weight), and 1% have both the wrong
weight and the wrong color. A unit is taken at random from the batch. What is the probability that
the unit is defective in at least one of the two respects?

Solution: Let A be the event that “the unit has the wrong weight” and B the event that “the unit
has the wrong color”. The model that we have chosen then shows that

P (A) = 0.02; P (B) = 0.05; P (AB) = 0.01.

Using the “Addition Theorem for Two Events” which states that

P (A ∪B) = P (A) + P (B)− P (AB)

we conclude that the desired probability is given by

P (A ∪B) = P (A) + P (B)− P (AB) = 0.02 + 0.05− 0.01 = 0.06.

12. Let us select one of the five-digit numbers 00000, 00001,..., 99999 at random. What is the probability
that the number only contains the digits 0 and 1?

Solution: We let each possible number correspond to one outcome. The number of possible cases
is then 105. The number of favorable cases is seen to be 25, for there are two favorable digits in each
of the five positions. Using the First Definition of Probability which states that if the probability of
the outcomes in a given experiment are the same, then the probability of an event is the ratio of the
number of favorable cases to the number of possible cases, we conclude that the desired probability
is 25/105=0.00032.

Now let us compute the probability that the digits in the random number are all different. The
number of favorable cases is now 10 · 9 · 8 · 7 · 6 = 30240 (any of the 10 digits can come first, then 1
of 9 digits can come second, and so on). Hence the probability is 30240/105 = 0.3024.

13. Consider the event of rolling two dice. Determine the probability that at least one 4 appears on the
dice.
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Solution: The sample space is as follows:

(1, 1) (2, 1) (3, 1) (4, 1) (5, 1) (6, 1)
(1, 2) (2, 2) (3, 2) (4, 2) (5, 2) (6, 2)
(1, 3) (2, 3) (3, 3) (4, 3) (5, 3) (6, 3)
(1, 4) (2, 4) (3, 4) (4, 4) (5, 4) (6, 4)
(1, 5) (2, 5) (3, 5) (4, 5) (5, 5) (6, 5)
(1, 6) (2, 6) (3, 6) (4, 6) (5, 6) (6, 6)

There 36 elements in the sample space. The number of elements of sample space having at least
one four is equal to 11. The corresponding probability is 11/36. Note that we could also solve this
problem using the expression for the probability of the union of two events.

14. Consider the event of rolling two dice. To visualize the set of outcomes, it is useful to use the following
table:

(1, 1) (2, 1) (3, 1) (4, 1) (5, 1) (6, 1)
(1, 2) (2, 2) (3, 2) (4, 2) (5, 2) (6, 2)
(1, 3) (2, 3) (3, 3) (4, 3) (5, 3) (6, 3)
(1, 4) (2, 4) (3, 4) (4, 4) (5, 4) (6, 4)
(1, 5) (2, 5) (3, 5) (4, 5) (5, 5) (6, 5)
(1, 6) (2, 6) (3, 6) (4, 6) (5, 6) (6, 6)

Compute the probability of the following events:

A = {sum = 7}, B = {8 < sum ≤ 11} and C = {10 < sum}.

Solution: The sample space is as shown for the previous problem. The number of elements of
the sample space resulting in event A ≡ {sum = 7} is equal to |A| = 6 where |A| shows the
cardinality (number of element) of the set A. This results in P (A) = 6/36 = 1/6. For event
B ≡ {8 < sum ≤ 11}, we have, |B| = 9 =⇒ P (B) = 9/36 = 1/4 and for event C ≡ {10 < sum}, we
have, |C| = 3 =⇒ P (C) = 3/36 = 1/12.

15. Given two events A and B, belonging to the same sample space, with P (A) = 0.4 and P (B) = 0.7.
What are the maximum and minimum possible values for P (AB)?

Solution: The maximum value of P (AB) is equal to P (A) = 0.4 and happens if A ⊂ B. The
minimum value of P (AB) is 0.1 and happens if A ∪B = S.

16. A and B have a and b dollars, respectively. They repeatedly toss a fair coin. If a head appears, A
gets 1 dollar from B; if a tail appears, B gets 1 dollar from A. The game goes on until one of the
players is ruined. Determine the probability that A is ruined.

Solution: The solution is easier to find if we consider a more general problem. Suppose that, at a
given moment, A has n dollars, and hence B has a + b − n dollars. Let Pn be the probability that,
given this scenario, A is eventually ruined. We notice that after one tossing, A will have either n+1,
or n− 1 dollars each with probability 1/2. Define the following events,

W ≡ A has currently n dollars, A wins in the next tossing, and A is finally ruined.

L ≡ A has currently n dollars, A losses in the next tossing, and A is finally ruined.

We have,
P (W ) = Pn+1/2
P (L) = Pn−1/2
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P (A is ruined) = P (W ∪ L) = P (W ) + P (L)

Note that W and L are disjoint. This results in,

Pn =
1

2
Pn+1 +

1

2
Pn−1.

Both of the characteristics roots of this recursive equation are equal to one. From this observation
we conclude that

Pn = C1 + C2n

The constants C1 and C2 are determined by noting that Pa+b = 0 (for if A possesses all the money,
he cannot be ruined) and P0 = 1 (for if A has no money, he is ruined from the beginning!). Using
these conditions, a simple calculation shows that

Pn = 1− n

a+ b

By taking n = a, we find that the probability is b/(a + b) that A is ruined. In the same way, it is
found that the probability is a/(a+ b) that B is ruined.
Suppose that A starts the game with a = 10 dollars and B with b = 100 dollars. The probability of
ruin for A is then 100/110 = 0.91.
Conclusion: Do not gamble with people who are richer than you!

17. In a standard deck of 52 cards there are 13 spades. Two cards are drawn at random. Determine the
probability that both are spades.

Solution: The number of favorable cases is equal to the number of combinations of 2 elements from
among 13, and the number of possible cases is equal to the number of combinations of 2 elements
from among 52. That is, we get

P (A) =

(
13

2

)/(
52

2

)
= 1/17

18. Suppose we roll 6 dice. What is the probability of A =“We get exactly two 4’s”?

Solution: One way that A can occur is

x

1

4

2

x

3

4

4

x

5

x

6

where x stands for “not a 4.” Since the six events “die one shows x”, “die two shows 4,” . . .,“die six
shows x” are independent, the indicated pattern has probability

5

6
· 1
6
· 5
6
· 1
6
· 5
6
· 5
6
=

(
1

6

)2 (5
6

)4

Here we have been careful to say “pattern” rather than “outcome” since the given pattern corresponds
to 54 outcomes in the sample space of 66 possible outcomes for 6 dice. Each pattern that results in
A corresponds to a choice of 2 of the 6 trials on which a 4 will occur, so the number of patterns is
C6
2 . When we write out the probability of each pattern there will be two 1/6’s and four 5/6’s so each

pattern has the same probability and

P (A) =

(
6

2

)(
1

6

)2 (5
6

)4
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19. In a bridge hand, what is the probability each player will be dealt exactly one ace?

Solution: Unlike the computations required for poker hands, here we need to consider simultaneously
four 13-card hands. To visualize the basic counting technique, think of the 52 cards laid out in a row.
Under 13 of the cards imagine an N ; under 13 others, an S; under 13 others, an E; and under the
remaining 13, a W . That permutation of N ’s, S’s, E’s, and W ’s would determine the hands received
by North, South, East, and West, respectively.
There are 52! ways to permute the 52 cards and there are 13! ways to permute each of the hands.
Clearly, the total number of ways to deal the four hands will equal to,

52!

13!13!13!13!

By a similar argument, the aces can be distributed, one to a player, in 4!/1!1!1!1! ways, and for each
of those distributions, the remaining 48 cards can be dealt in 48!/12!12!12!12! ways.
The Fundamental Principle states that if operation A can be performed in m different ways and
operation B in n different ways, the sequence (operation A, operation B) can be performed in m · n
different ways.
Thus, by the Fundamental Principle, the probability of each player receiving exactly one ace is

4!

(1!)4
· 48!

(12!)4

52!

(13!)4

=
4!(13)448!

52!

or 0.105.

20. In the game of bridge the entire deck of 52 cards is dealt out to 4 players. What is the probability
that one of the players receives 13 spades?

Solution: There are

(
52

13, 13, 13, 13

)
possible divisions of the cards among the four distinct players.

As there are

(
39

13, 13, 13

)
possible divisions of the cards leading to a fixed player having all 13 spades,

it follows that the desired probability is given by

4

(
39

13, 13, 13

)
(

52

13, 13, 13, 13

) ≈ 6.3× 10−12

One could also solve this problem by taking into account that 13 cards can be selected in

(
52

13

)
ways

and one of these selection corresponds to 13 spades, then the desired probability is equal to,

4(
52

13

)

where the factor 4 accounts for the fact that there are four players each having the same probability
of receiving the 13 spades.
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21. If 2 balls are “randomly drawn” from a bowl containing 6 white and 5 black balls, what is the
probability that one of the drawn balls is white and the other is black?

Solution: If we regard the order in which the balls are selected as being significant, then the sample
space consists of 11 · 10 = 110 points. Furthermore, there are 6 · 5 = 30 ways in which the first ball
selected is white and the second black. Similarly, there are 5 · 6 = 30 ways in which the first ball is
black and the second white. Hence, assuming that “randomly drawn” means that each of the 110
points in the sample space are equally likely to occur, we see that the desired probability is

30 + 30

110
=

6

11

This problem could also have been solved by regarding the outcome of the experiment as the (un-

ordered) set of drawn balls. From this point of view, there would be

(
11

2

)
=55 points in the sample

space. Using this second representation of the experiment, we see that the desired probability is(
6

1

)(
5

1

)
(
11

2

) =
6

11

which agrees with the earlier answer.

22. How many integers between 100 and 999 have distinct digits, and how many of those are odd?

Solution: Think of the integers as being an arrangement of a hundreds digit, a tens digit, and a
units digit. The hundreds digit can be filled in any of 9 ways (0s are inadmissible), the tens place in
any of 9 ways (anything but what appears in the hundreds place), and the units place in any of 8
ways (the first two digits must not be repeated). Thus, the number of integers between 100 and 999
with distinct digits is 9 · 9 · 8, or 648.

(9)

100s

(9)

10s

(8)

1s

To compute the number of odd integers with distinct digits, we first consider the units place, where
any of 5 integers can be positioned (1,3,5,7, or 9). Then, turning to the hundreds place, we have
8 choices (the 0 is inadmissible; so is whatever appeared in the units place). The same number of
choices is available for the tens place. Multiplying these numbers together gives 8 · 8 · 5 = 320 as the
number of odd integers in the range 100-999.

23. In a deck of cards there are 52 cards consisting of 4 suits with 13 denominations in each. A poker
deal contains 5 randomly selected cards. A “full house” means that the player receives 3 cards of
one denomination and 2 cards of another denomination; “three-of-a-kind” means that he gets 3 cards
of one denomination, 1 of another denomination and 1 of a third denomination. Determine the
probability of a full house and the probability of a three-of-a-kind.

Solution: (a) Full House

The number of possible poker deals is

(
52

5

)
. The favorable cases are found as follows.
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The denominations for the 3-cards and the 2-cards can be selected in 13 · 12 ways. There are

(
4

3

)

ways of selecting 3 cards from 4 cards with the same denomination; analogously, there are

(
4

2

)
ways

of taking out 2 cards. Hence the number of favorable cases is 13 · 12 ·
(
4

3

)
·
(
4

2

)
, and the probability

we want becomes

13 · 12
(
4

3

)(
4

2

)/(
52

5

)
≈ 1

694

(b) Three-of-a-kind

The denomination for the 3-cards, the 1-card and the 1-card can be chosen in 13 ·
(
12

2

)
ways. Hence

we find, in about the same way as in (a), the probability

13 ·
(
12

2

)(
4

3

)(
4

1

)(
4

1

)/(
52

5

)
≈ 1

47

24. Suppose we select two marbles at random from a bag containing four white and six red marbles.
What is the probability that we select one of each color?

Solution: There are C10
2 outcomes in the sample space. We can choose one white marble in C4

1

ways and one red marble in C6
1 ways.Thus the desired probability is

P (one white, one red) =

(
4

1

)(
6

1

)
(
10

2

) =
24

45

Alternatively, we may call the event “one white, one red” the event (w, r) ∪ (r, w) and since these
are disjoint events, the probability is

(4/10)(6/9) + (6/10)(4/9) = 24/45

25. A random experiment consists of selecting at random an integer between 100 and 499. What is the
probability of the following events: (a) “the selected integer contains at least one 1”, and (b) “the
selected integer contains exactly two 2’s”?

Solution: The number of possible outcomes is 400.
(a) Let E be the desired event. It is more simple to compute P (Ē) first. For Ē to happen the first
digit can be 2, 3, or 4, and the other two digits can be any of 2, 3, . . . , 9. Thus

P (E) = 1− P (Ē) = 1− 3 . 9 . 9

400
= 1− 0.6075 = 0.3923

(b) For this event we can have the following cases: x 2 2 , 2 x 2, 2 2 x. In the first case x can be 1,
3, or 4, and in the two latter cases x can be any digit except 2.Thus

P (exactly two 2’s) =
3 + 9 + 9

400
= .0525
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26. Suppose we pick 4 balls out of an urn with 12 red balls and 8 black balls. What is the probability of
B = “We get two balls of each color”?

Solution: There are (
20

4

)
=

20 · 19 · 18 · 17
1 · 2 · 3 · 4

= 5 · 19 · 3 · 17 = 4845

ways of picking 4 balls out of the 20. To count the number of outcomes in B, we note that there are(
12

2

)
ways to choose the red balls and

(
8

2

)
ways to choose the black balls, so the multiplication rule

implies

|B| =
(
12

2

)(
8

2

)
=

12 · 11
1 · 2

· 8 · 7
1 · 2

= 6 · 11 · 4 · 7 = 1, 848

It follows that P (B) =1848/4845=0.3814.

27. In a game of bridge, each of the four players gets 13 cards. If North and South have 8 spades between
them, what is the probability that East has 3 spades and West has 2?

Solution: We can imagine that first North and South take their 26 cards and then East draws his
13 cards from the 26 that remain. Since there are 5 spades and 21 nonspades, the probability he

receives 3 spades and 10 nonspades is

(
5

3

) (
21

10

)
/

(
26

13

)
. To compute the last probability it is useful

to observe that (
5

3

)(
21

10

)
(
26

13

) =

5!

3!2!
· 21!

10!11!
26!

13!13!

=

13!

3!10!
· 13!

2!11!
26!

5!21!

=

(
13

3

)(
13

2

)
(
26

5

)
To arrive at the answer on the right-hand side directly, think of 26 blanks, the first thirteen being
East’s cards, the second thirteen being West’s. We have to pick 5 blanks for spades, which can be

done in

(
26

5

)
ways, while the number of ways of giving East 3 spades and West 2 spades is

(
13

3

)
(
13

2

)
. After some cancellation the right-hand side is

13 · 2 · 11 · 13 · 6
26 · 5 · 23 · 22

=
22308

65780
= 0.3391

Multiplying the last answer by 2, we see that with probability 0.6783 the five outstanding spades will
be divided 3-2, that is, one opponent will have 3 and the other 2. Similar computations show that
the probabilities of 4-1 and 5-0 splits are 0.2827 and 0.0391.

28. In an urn there are N slips of paper marked 1, 2, .., N . Slips are drawn at random, one at a time, until
the urn is empty. If slip no. i is obtained at the ith drawing, we say that a “rencontre” has occurred.
Find the probability of at least one rencontre. This problem is called the problem of rencontre or
the matching problem.

Solution: If Ai =“rencontre at the ith drawing”, we can write the required probability P as

P = P (
N∪
1

Ai)
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The Addition Theorem for Three Events states that:

P (A ∪B ∪ C) = P (A) + P (B) + P (C)− P (AB)− P (AC)− P (BC) + P (ABC)

By generalizing this theorem to N events, we have the general addition formula

P (
N∪
1

Ai) =
∑
i

P (Ai)−
∑
i<j

P (AiAj) +
∑

i<j<k

P (AiAjAk) + . . .+ (−1)N−1P (
N∩
1

Ai)

In the first sum there are N terms, in the second sum

(
N

2

)
terms, and so on. Consider a general

term P(Ai1Ai2 ...Air), which expresses the probability of rencontre in drawings i1, i2, ..., ir. Let us
compute the probability. The total number of possible cases for the N drawings is N !. Favorable
cases are where the slips i1, i2, ..., ir appear in the drawings with these numbers, while the remaining
slips can appear in any order in the other drawings; this gives (N − r)! possibilities. Hence we have

P (Ai1Ai2 ...Air) = (N − r)!/N !

If this is inserted into the expression given before, we find

P (
N∪
1

Ai) = N · (N − 1)!

N !
−
(
N

2

)
· (N − 2)!

N !
+ · · ·+ (−1)N−1

(
N

N

)
1

N !

or, after a reduction,

P = 1− 1

2!
+

1

3!
− · · ·+ (−1)N−1 1

N !

For large N this is approximately equal to 1− e−1 = 0.63.
The problem of rencontre was first discussed by Montmort at the beginning of the eighteenth century.

29. A carnival operator wants to set up a ring-toss game. Players will throw a ring of diameter d on
to a grid of squares, the side of each square being of length s (see the following figure). If the ring
lands entirely inside a square, the player wins a prize. To ensure a profit, the operator must keep
the player’s chances of winning down to something less than one in five. How small can the operator
make the ratio d/s?

s

s

d

Solution: First, it will be assumed that the player is required to stand far enough away so that no
skill is involved and the ring is falling at random on the grid. We see that in order for the ring not to
touch any side of the square, the ring’s center must be somewhere in the interior of a smaller square,
each side of which is a distance d/2 from one of the grid lines. Since the area of a grid square is s2
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and the area of an interior square is (s − d)2, the probability of a winning toss can be written as a
simple ratio:

P (ring touches no lines) =
(s− d)2

s2

d/2

s

s

But the operator requires that
(s− d)2

s2
≤ 0.20

Solving for d/s gives
d

s
≥ 1−

√
0.20 = 0.55

That is, if the diameter of the ring is at least 55% as long as the side of one of the squares, the player
will have no more than a 20 % chance of winning.

30. Two friends agree to meet “sometime around 12:30.” But neither of them is particularly punctual -
or patient. What will actually happen is that each will arrive at random sometime in the interval
from 12:00 to 1:00. If one arrives and the other is not there, the first person will wait 15 min or until
1:00, whichever comes first, and then leave. What is the probability the two will get together?

Solution: To simplify notation, we can represent the time period from 12:00 to 1:00 as the interval
from 0 to 60 min. Then if x and y denote the two arrival times, the sample space is the 60 × 60
square shown in the figure below. Furthermore, the event M , “the two friends meet,” will occur if
and only if |x− y| ≤ 15 or, equivalently, if and only if −15 ≤ x− y ≤ 15. These inequalities appear
as the shaded region in the figure below.

Notice that the areas of the two triangles above and below M are each equal to 1
2(45)(45). It follows

that the two friends have a 44% chance of meeting:

P (M) =
area of M

area of S
=

(60)2 − 2

[
1

2
(45)(45)

]
(60)2

≈ 0.44
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M

y

x

(45,60)

(60,45)

60

0
60(15,0)

(0,15)

x-y=-15

x-y=15

3 Conditional Probability and Independence

3.1 Introduction

In this chapter, we introduce one of the most important concepts in probability theory, that of conditional
probability. The importance of this concept is twofold. In the first place, we are often interested in
calculating probabilities when some partial information concerning the result of the experiment is available;
in such a situation the desired probabilities are conditional. Second, even when no partial information is
available, conditional probabilities can often be used to compute the desired probabilities more easily.

3.2 Conditional Probabilities

Conditional Probability: Consider two events E and F which are somehow interrelated (are dependent
on each other). The conditional probability of E given F is defined as,

P (E|F ) =
P (EF )

P (F )
, if P (F ) ̸= 0.

If P (F ) = 0, then the conditional probability is not defined.

The multiplication rule
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P (E1E2E3 · · ·En) = P (E1)P (E2|E1)P (E3|E1E2) · · ·P (En|E1E2 . . . En−1)

3.3 Bayes’ formula

For any two events E and F ,

P (E) = P (EF ) + P (EF c)
= P (E|F )P (F ) + P (E|F c)P (F c)
= P (E|F )P (F ) + P (E|F c)[1− P (F )]

Bayes’ formula: Suppose that F1, F2, . . . , Fn are mutually exclusive events such that
n∪

i=1

Fi = S, then

P (Fj |E) =
P (EFj)

P (E)

=
P (E|Fj)P (Fj)
n∑

i=1

P (E|Fi)P (Fi)

3.4 Independent Events

Two Independent Events: Two events E and F are independent if

P (EF ) = P (E)P (F )

then P (E|F ) = P (E) and P (F |E) = P (F ).
If E and F are independent, then so are E and F c, as well as Ec and F and also Ec and F c.
Three Independent Events: The three events E,F and G are independent if

P (EFG) = P (E)P (F )P (G)
P (EF ) = P (E)P (F )
P (EG) = P (E)P (G)
P (FG) = P (F )P (G)
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Independent Events: Similarly, the events Ei, i = 1, 2, . . . , n, are called independent if and only if for
any collection of r distinct indices (α1, α2, . . . , αr) chosen from the set 1, 2, . . . , n, we have,

P (Eα1Eα2 · · ·Eαr) = P (Eα1)P (Eα2) · · ·P (Eαr)

3.5 P (·|F ) Is a Probability

Conditional Probabilities satisfy all of the properties of ordinary probabilities. That is:

(a) 0 ≤ P (E|F ) ≤ 1 .

(b) P (S|F ) = 1 .

(c) If E1, E2, . . . are disjoint events, then P

(∪
i

Ei|F
)

=
∑
i

P (Ei|F )
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3.6 Some Solved Problems

1. Consider a die with 1 painted on three sides, 2 painted on two sides, and 3 painted on one side. If
we roll this die ten times what is the probability we get five 1’s, three 2’s and two 3’s?

Solution: The answer is
10!

5!3!2!

(
1

2

)5 (1
3

)3 (1
6

)2

If we have a group of n objects to be divided into m groups of size n1, ..., nm with n1 + · · ·+ nm = n
this can be done in

n!

n1!n2! · · ·nm!
ways

The first factor, in the answer above, gives the number of ways to pick five rolls for 1’s, three rolls
for 2’s, and two rolls for 3’s. The second factor gives the probability of any outcome with five 1’s,
three 2’s, and two 3’s. Generalizing from this example, we see that if we have k possible outcomes
for our experiment with probabilities p1, ..., pk then the probability of getting exactly ni outcomes of
type i in n = n1 + ...+ nk trials is

n!

n1! · · ·nk!
pn1
1 · · · pnk

k

since the first factor gives the number of outcomes and the second the probability of each one. We
referred to this as the Multinomial Distribution.

2. Suppose an urn contains r = 1 red chip and w = 1 white chip. One is drawn at random. If the chip
selected is red, that chip along with k = 2 additional red chips are put back into the urn. If it is
white, the chip is simply returned to the urn, then a second chip is drawn. What is the probability
that both selections are red?

Solution: If we let R1 be the event “red chip is selected on first draw” and R2 be “red chip is
selected on second draw,” it should be clear that

P (R1) =
1

2
and P (R2|R1) =

3

4

We also know that
P (AB) = P (A|B)P (B)

Hence, substituting the probabilities we found into the above equation gives

P (R1R2) = P (both chips are red) = P (R1)P (R2|R1)

=

(
1

2

)(
3

4

)
=

3

8

3. At a party n men take off their hats. The hats are then mixed up and each man randomly selects
one. We say that a match occurs if a man selects his own hat.
1. What is the probability of no matches?
2. What is the probability of exactly k matches?

Solution: We can solve this problem using the corresponding formulas for matching problem. How-
ever, in the following, we examine a different approach using conditional probability.
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Let E denote the event that no matches occur, and to make explicit the dependence on n write
Pn = P (E). We start by conditioning on whether or not the first man selects his own hat-call these
events M and M c. Then

Pn = P (E) = P (E|M)P (M) + P (E|M c)P (M c) (1)

Clearly, P (E|M) = 0, and so

Pn = P (E|M c)
n− 1

n

Now, P (E|M c) is the probability of no matches when n− 1 men select from a set of n− 1 hats that
does not contain the hat of one of these men. This can happen in either of two mutually exclusive
ways. Either there are no matches and the extra man does not select the extra hat (this being the
hat of the man that chose first), or there are no matches and the extra man does select the extra hat.
The probability of the first of these events is just Pn−1, which is seen by regarding the extra hat as
“belonging” to the extra man. As the second event has probability [1/(n− 1)]Pn−2, we have

P (E|M c) = Pn−1 +
1

n− 1
Pn−2

and thus, from Equation (1),

Pn =
n− 1

n
Pn−1 +

1

n
Pn−2

or equivalently

Pn − Pn−1 = − 1

n
(Pn−1 − Pn−2) (2)

However, as Pn is the probability of no matches when n men select among their own hats, we have

P1 = 0 P2 =
1

2

and so, from Equation (2),

P3 − P2 = −(P2 − P1)

3
= − 1

3!
or P3 =

1

2!
− 1

3!

P4 − P3 = −(P3 − P2)

4
=

1

4!
or P4 =

1

2!
− 1

3!
+

1

4!

and, in general, we see that

Pn =
1

2!
− 1

3!
+

1

4!
− · · ·+ (−1)n

n!

To obtain the probability of exactly k matches, we consider any fixed group of k men. The probability
that they, and only they, select their own hats is

1

n

1

n− 1
· · · 1

n− (k − 1)
Pn−k =

(n− k)!

n!
Pn−k

where Pn−k is the probability that the other n − k men, selecting among their own hats, have no

matches. As there are

(
n

k

)
choices of a set of k men, the desired probability of exactly k matches is

Pn−k

k!
=

1

2!
− 1

3!
+ · · ·+ (−1)n−k

(n− k)!

k!
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4. In a batch of 50 units there are 5 defectives. A unit is selected at random, and thereafter one more
from the remaining ones. Find the probability that both are defective.

Solution: Let A be the event that “the first unit is defective” and B the event that “the second
unit is defective”. It is seen that P (A) = 5/50. If A occurs, there remain 49 units, 4 of which are
defective. Hence we conclude that P (B|A) = 4/49, and using the following formula

P (AB) = P (A)P (B|A) = P (B)P (A|B)

we arrive at the probability we seek:

P (AB) =
5

50
· 4

49
=

2

245

Let us now draw a third unit, and let us evaluate the probability that the first two units are defective
and that the third one is good. If C is the event that “the third unit is good”, and we employ the
top formula twice to get the following formula for three events

P (ABC) = P (AB)P (C|(AB)) = P (A)P (B|A)P (C|(AB))

we arrive at our final answer

P (ABC) =
5

50
· 4

49
· 45
48

=
3

392

5. In a factory, units are manufactured by machines H1,H2,H3 in the proportions 25 : 35 : 40. The
percentages 5%, 4% and 2%, respectively, of the manufactured units are defective. The units are
mixed and sent to the customers. (a) Find the probability that a randomly chosen unit is defective.
(b) Suppose that a customer discovers that a certain unit is defective. What is the probability that
it has been manufactured by machine H1?

Solution: (a) The Total Probability Theorem states that if the events H1,H2,...,Hn are mutually
exclusive, have positive probabilities, and together fill the probability space Ω completely, any event
A satisfies the formula

P (A) =
n∑

i=1

P (Hi)P (A|Hi)

Using this theorem, and taking Hi = “unit produced by machine Hi” and A=“unit is defective”, we
find

P (A) = 0.25 · 0.05 + 0.35 · 0.04 + 0.40 · 0.02 = 0.0345.

(b) Bayes’ Theorem states that, under the same conditions as the Total Probability Theorem (see
part (a)),

P (Hi|A) =
P (Hi)P (A|Hi)

n∑
j=1

P (Hj)P (A|Hj)

Hence Bayes’ theorem gives the answer (A = defective unit)

P (H1|A) =
0.25 · 0.05

0.25 · 0.05 + 0.35 · 0.04 + 0.40 · 0.02
= 0.36
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6. In a certain country there are two nationalities living together, the Bigs and the Smalls. Among the
Bigs 80% are tall, and among the Smalls 1%. A visiting tourist encounters a person at random who
turns out to be tall. Determine the probability that this person belongs to the Bigs.

Solution: Let H1 = “the person belongs to the Bigs”, H2 = “the person belongs to the Smalls”,
A=“the person is tall”. Bayes’ theorem shows that

P(H1|A) =
P (H1) · 0.80

P (H1) · 0.80 + P (H2) · 0.01
.

The formulation of the problem is inadequate, since it is necessary to know the probabilities P (H1)
and P (H2), the proportions of Bigs and Smalls in the country.
If the proportions are the same, so that P (H1) = P (H2) = 1/2, the probability becomes 80/81 = 0.99.
But if the Bigs are so few that P (H1) = 0.001 and P (H2) = 0.999, the probability is instead

0.001 · 0.80/(0.001 · 0.80 + 0.999 · 0.01) = 80/1079 = 0.0741.

7. Al flips 3 coins and Betty flips 2. Al wins if the number of Heads he gets is more than the number
Betty gets. What is the probability Al will win?

Solution: Let A be the event that Al wins, let Bi be the event that Betty gets i Heads, and let Cj

be the event that Al gets j Heads. By considering the four outcomes of flipping two coins it is easy
to see that

P (B0) = 1/4 P (B1) = 1/2 P (B2) = 1/4

while considering the eight outcomes for three coins leads to

P (A|B0) = P (C1 ∪ C2 ∪ C3) = 7/8

P (A|B1) = P (C2 ∪ C3) = 4/8

P (A|B2) = P (C3) = 1/8

Since ABi, i = 0, 1, 2 are disjoint and their union is A, we have

P (A) =
2∑

i=0

P (ABi) =
2∑

i=0

P (A|Bi)P (Bi)

since P (ABi) = P (A|Bi)P (Bi) by the definition of conditional probability. Plugging in the values,
we obtain,

P (A) =
1

4
· 7
8
+

2

4
· 4
8
+

1

4
· 1
8
=

7 + 8 + 1

32
=

1

2

8. Suppose for simplicity that the number of children in a family is 1, 2, or 3, with probability 1/3 each.
Little Bobby has no brothers. What is the probability he is an only child?

Solution: Let B1, B2, B3 be the events that a family has one, two, or three children, and let A
be the event that a family has only one boy. We want to compute P (B1|A). By the definition of
conditional probability, we have,

P (B1|A) = P (B1A)/P (A)
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To evaluate the numerator we again use the definition of conditional probability

P (B1A) = P (B1)P (A|B1) =
1

3
· 1
2
=

1

6

Similarly, P (B2A) = P (B2)P (A|B2) =
1

3
· 2
4
=

1

6
and

P (B3A) = P (B3)P (A|B3) =
1

3
· 3
8
=

1

8

Now P (A) =
∑
i

P (BiA) so

P (B1|A) =
P (B1A)

P (A)
=

1/6

1/6 + 1/6 + 1/8
=

8

8 + 8 + 6
=

4

11

9. A company buys tires from two suppliers, 1 and 2. Supplier 1 has a record of delivering tires
containing 10% defectives, whereas supplier 2 has a defective rate of only 5%. Suppose 40% of the
current supply came from supplier 1. If a tire is taken from this supply and observed to be defective,
find the probability that it came from Supplier 1.

Solution: Let Bi denote the event that a tire comes from supplier i, i = 1,2, and note that B1 and
B2 form a partition of the sample space for the experiment of selecting one tire. Let A denote the
event that the selected tire is defective. Then,

P (B1|A) =
P (B1)P (A|B1)

P (B1)P (A|B1) + P (B2)P (A|B2)

=
.40(.10)

.40(.10) + (.60)(.05)

=
0.04

.04 + .03
=

4

7

Supplier 1 has a greater probability of being the party supplying the defective tire than does Supplier
2.

10. Urn I contains 2 white and 4 red balls, whereas urn II contains 1 white and 1 red ball. A ball is
randomly chosen from urn I and put in to urn II, and a ball is then randomly selected from urn II.
1) What is the probability that the ball selected from urn II is white?
2) What is the conditional probability that the transferred ball was white, given that a white ball is
selected from urn II?

Solution: Letting W be the event that the transferred ball was white, and E the event that the ball
selected from II was white we obtain,

1) P (E) = P (E|W )P (W ) + P (E|W c)P (W c)

=

(
2

3

)(
2

6

)
+

(
1

3

)(
4

6

)
=

4

9
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2)P (W |E) =
P (WE)

P (E)

=
P (E|W )P (W )

P (E)

=
1

2

11. A laboratory blood test is 95 per cent effective in detecting a certain disease when it is, in fact,
present. However, the test also yields a “false positive” result for 1 per cent of the healthy persons
tested. (That is, if a healthy person is tested, then, with probability 0.01, the test result will imply
he has the disease.) If 0.5 per cent of the population actually has the disease, what is the probability
a person has the disease given that his test result is positive?

Solution: Let D be the event that the tested person has the disease and E the event that his test
result is positive. The desired probability P (D|E) is obtained by

P (D|E) =
P (DE)

P (E)

=
P (E|D)P (D)

P (E|D)P (D) + P (E|Dc)P (Dc)

=
(.95)(.005)

(.95)(.005) + (.01)(.995)

=
95

294
≈ .323

Thus only 32 per cent of those persons whose test results are positive actually have the disease. As
you may be surprised at this result (as it is expected this figure to be much higher, since the blood
test seems to be a good one), it is probably worthwhile to present a second argument which, although
less rigorous than the preceding one, is probably more revealing.

Since 0.5 per cent of the population actually has the disease, it follows that, on the average, 1 person
out of every 200 tested will have it. The test will correctly confirm that this person has the disease
with probability 0.95. Thus, on the average, out of every 200 persons tested the test will correctly
confirm that 0.95 persons have the disease. On the other hand, however, out of the (on the average)
199 healthy people, the test will incorrectly state that (199)(0.01) of these people have the disease.
Hence, for every 0.95 diseased persons that the test correctly states are ill, there are (on the average)
(199)(0.01) healthy persons that the test incorrectly states are ill. Hence the proportion of time that
the test result is correct when it states that a person is ill is

0.95

0.95 + (199)(0.01)
=

95

294
≈ 0.323

12. A purchaser of electrical components buys them in lots of size 10. It is his policy to inspect 3
components randomly from a lot and to accept the lot only if all 3 are non-defective. If 30 per cent
of the lots have 4 defective components and 70 per cent have only 1, what proportion of lots does
the purchaser reject?

Solution: Let A denote the event that the purchaser accepts a lot. Now, using the Total Probability
Theorem

P (A) = P (A|lot has 4 defectives)
3

10
+ P (A|lot has 1 defective)

7

10
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=

(
4

0

)(
6

3

)
(
10

3

) (
3

10

)
+

(
1

0

)(
9

3

)
(
10

3

) (
7

10

)

=
54

100

Hence 46 per cent of the lots are rejected.

13. Suppose events A,B, and C are mutually independent. Form a composite event from A and B and
call it E. Is E independent of C?

Solution: Yes.

14. Suppose A and B are independent events. Does it follow that Ac and Bc are also independent? That
is, does P (A ∩B) = P (A)P (B) guarantee that P (Ac ∩Bc) = P (Ac)P (Bc) ?

Solution: The answer is yes, the proof being accomplished by equating two different expression for
P (Ac ∩Bc). First, we know that

P (Ac ∪Bc) = P (Ac) + P (Bc)− P (AcBc)

But the union of two complement is also the complement of their intersection. Therefore,

P (Ac ∪Bc) = 1− P (AB)

Combining the two equations above, we get

1− P (AB) = 1− P (A) + 1− P (B)− P (AcBc)

Since A and B are independent, P (AB) = P (A) · P (B), so

P (AcBc) = 1− P (A) + 1− P (B)− (1− P (A)P (B))

= (1− P (A))(1− P (B))

= P (Ac)P (Bc)

the latter factorization implying that Ac and Bc are, themselves, independent.

15. We throw a fair four-sided die twice. Let E be the event that “the sum of the dice is 4”, and let F
be the event that “the first die thrown has value 2”. Are the events E and F independent?

Solution: The sample space for this problem consists of 16 equally likely outcomes as shown graph-
ical in figure 5. Also shown are the two events E and F . The event EF is a single outcome (2,2)
with probability 1/16.

On the other hand, p(E) = 3/16 and P (F ) = 4/16, thus

3

16
.
4

16
=

3

64
̸= 1

16

The events E and F are therefore not independent.
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1 2 3 4

1

2

3

4 Event G: “die 2 has value 4 ”

Event F : “die 1 has value 2 ”

Event E: “sum of dice is 4”

die 2

die 1

Figure 5: A sample space for two throws of a four-sided die.
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1

0
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16. Two coins are available, one unbiased and the other two-headed. Choose a coin at random and toss
it once; assume that the unbiased coin is chosen with probability 3/4. Given that the result is head,
find the probability that the two-headed coin was chosen.

Solution: The “tree diagram” shown below represents the experiment.

We may take Ω to consist of the four possible paths through the tree, with each path assigned a
probability equal to the product of the probabilities assigned to each branch. Notice that we are
given the probabilities of the events B1 = {unbiased coin chosen} and B2 = {two-headed coin chosen},
as well as the conditional probabilities P (A|Bi), where A = {coin comes up head}. This is sufficient
to determine the probabilities of all events.
Now we can compute P (B2|A) using the definition of conditional probability to obtain

P (B2|A) =
P (B2A)

P (A)

=
P{two-headed coin chosen and coin comes up head}

P{coin comes up head}

=
(1/4)(1)

(3/4)(1/2) + (1/4)(1)
=

2

5

17. Russian roulette is played with a revolver equipped with a rotatable magazine of six shots. The
revolver is loaded with one shot. The first duelist, A, rotates the magazine at random , points the
revolver at his head and presses the trigger. If, afterwards, he is still alive, he hands the revolver to
the other duelist, B, who acts in the same way as A. The players shoot alternately in this manner,
until a shot goes off. Determine the probability that A is killed.

Solution: Let T be the event that “A is killed on the first trial”. We have

P (A is killed) = P (T ) + P (T c)P (A is killed|T c).

But if A survives the first trial, the roles of A and B are interchanged and so P(A is killed |T c) =P(B
is killed)=1-P(A is killed). Inserting this above, we find

P (A is killed) =
1

6
+

5

6
[1− P (A is killed)]

Solving this equation we find P(A is killed)=6/11.

18. A toy manufacturer buys ball bearings from three different suppliers - 50% of his total order comes
from supplier 1, 30% from supplier 2, and the rest from supplier 3. Past experience has shown that the
quality control standards of the three suppliers are not all the same. Of the ball bearings produced
by supplier 1, 2% are defective, while suppliers 2 and 3 produce defective bearings 3% and 4% of
the time, respectively. What proportion of the ball bearings in the toy manufacturer’s inventory are
defective?

Solution: Let Ai be the event “bearing came from supplier i,” i=1,2,3. Let B be the event “bearing
in toy manufacturer’s inventory is defective.” Then

P (A1) = 0.5, P (A2) = 0.3, P (A3) = 0.2

and

P (B|A1) = 0.02, P (B|A2) = 0.03, P (B|A3) = 0.04
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The Total Probability Theorem states that:
Let {A1}ni=1 be a set of events defined over S such that S =

∪n
i=1Ai, AiAj = ∅ for i ̸= j, and

P (Ai) > 0 for i=1,2,...,n. For any event B, we have,

P (B) =
n∑

i=1

P (B|Ai)P (Ai)

Hence, combining the probabilities according to the theorem gives

P (B) = (0.02)(0.5) + (0.03)(0.3) + (0.04)(0.2)

= 0.027

meaning the manufacturer can expect 2.7% of his stock of ball bearings to be defective.

19. A man has n keys on a chain, one of which opens the door to his apartment. Having celebrated a
little too much one evening, he returns home, only to find himself unable to distinguish one key from
another. Resourceful, he works out a fiendishly clever plan: He will choose a key at random and
try it. If it fails to open the door, he will discard it and choose one of the remaining n − 1 keys at
random, and so on. Clearly, the probability that he gains entrance with the first key he selects is
1/n. What is the probability the door opens with the second key he tries?

Solution: It would be tempting here to answer 1/(n − 1), but in this case our intuition would be
in error. Actually, 1/(n − 1) is a right answer, but to a different question. To see why, let Ki,
i = 1, 2, . . . , n, denote the event “ith key tried opens door.” Then P (K1) is certainly 1/n, but the
event “second key tried opens door” can occur only if the first key does not open the door. That is,

P (K2) = P (K2K
c
1)

Since we also know that

P (AB) = P (A|B)P (B) (3)

applying this equation to the right-hand side of the top equation, we see that the probability that
the second key tried opens the door is the same as the probability for the first key, 1/n:

P (K2K
c
1) = P (K2|Kc

1)P (Kc
1)

=

(
1

n− 1

)(
n− 1

n

)
=

1

n

Thus, the ratio 1/(n− 1) does answer a conditional probability P (K2|Kc
1).

20. Urn I contains two white chips (w1,w2) and one red chip (r1); urn II has one white chip (w3) and
two red chips (r2,r3). One chip is drawn at random from urn I and transferred to urn II. Then one
chip is drawn from urn II. Suppose a red chip is selected from urn II. What is the probability the
chip transferred was white?

Solution: Let A1 and A2 denote the events “red chip is transferred from urn I” and “white chip is
transferred from urn I.” Let B be the event “red chip is drawn from urn II.” What we are asking for
is P (A2|B).
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We note that P (A1) =
1
3 , P (A2) =

2
3 , P (B|A1) =

3
4 , and P (B|A2) =

2
4 .

Bayes’ Theorem states:
Let {Ai}ni=1 be a set of n events, each with positive probability, that partition S in such a way that∪n

i=1Ai = S and AiAj = ∅ for i ̸= j. For any event B (also defined on S), where P (B) > 0,

P (Aj |B) =
P (B|Aj)P (Aj)
n∑

i=1

P (B|Ai)P (Ai)

for any 1 ≤ j ≤ n.

Therefore, we can substitute the probabilities we have found into Bayes’ formula to obtain:

P (A2|B) =
P (B|A2)P (A2)

P (B|A1)P (A1) + P (B|A2)P (A2)

=

(
2

4

)(
2

3

)
(
3

4

)(
1

3

)
+

(
2

4

)(
2

3

)
=

4

7

21. Urn I contains five red chips and four white chips; urn II contains four red chips and five white chips.
Two chips are to be transferred from urn I to urn II. Then a single chip is to be drawn from urn II.
What is the probability the chip drawn from the second urn will be white?

Solution: Let W be the event “white chip is drawn from urn II.” Let Ai, i=0, 1, 2, denote the event
“i white chips are transferred from urn I to urn II.” By the Total Probability Theorem, we obtain,

P (W ) = P (W |A0)P (A0) + P (W |A1)P (A1) + P (W |A2)P (A2)

Note that P (W |Ai) = (5 + i)/11 and that P (Ai) is gotten directly from the hypergeometric distribu-
tion. Therefore,

P (W ) =

(
5

11

)
(
4

0

)(
5

2

)
(
9

2

) +

(
6

11

)
(
4

1

)(
5

1

)
(
9

2

) +

(
7

11

)
(
4

2

)(
5

0

)
(
9

2

)

=

(
5

11

)(
10

36

)
+

(
6

11

)(
20

36

)
+

(
7

11

)(
6

36

)
=

53

99

22. The highways connecting two resort areas at A and B are shown in figure below:
There is a direct route through the mountains and a more-circuitous route going through a third
resort area at C in the foothills. Travel between A and B during the winter months is not always
possible, the roads sometimes being closed due to snow and ice.

Suppose we let E1, E2, and E3 denote the events that highways AB, AC, and CB are passable,
respectively, and we know from past years that on a typical winter day,
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E1

E3

C

A B

E2

Figure 6:

P (E1) =
2

5
, P (E3|E2) =

4

5

P (E2) =
3

4
, P (E1|E2E3) =

1

2

P (E3) =
2

3

What is the probability that a traveller will be able to get from A to B?

Solution: If E denotes the event that we can get from A to B, then

E = E1 ∪ (E2E3)

It follows that
P (E) = P (E1) + P (E2E3)− P [E1(E2E3)]

We know that,

P (E) = P (E1) + P (E3|E2)P (E2)− P [E1|(E2E3)]P (E2E3)

= P (E1) + P (E3|E2)P (E2)− P [E1|(E2E3)]P (E3|E2)P (E2)

=
2

5
+

(
4

5

)(
3

4

)
−
(
1

2

)(
4

5

)(
3

4

)
= 0.7

23. A crooked gambler has nine dice in her coat pocket: Three are fair and six are biased. The biased
ones are loaded in such a way that the probability of rolling a 6 is 1

2 . She takes out one die at random
and rolls it twice. Let A be the event “6 appears on the first roll” and B be the event “6 appears on
the second roll.” Are A and B independent?

Solution: Our intuition here would most probably answer yes - but, appearances not withstanding,
this is not a typical dice problem. Repeated throws of a die do qualify as independent events if
the probabilities associated with the different faces are known. In this situation, though, those
probabilities are not known and depend in a random way on which die the gambler draws from her
pocket.
To see formally what effect having two different dice has on the relationship between A and B, we
must appeal to the Total Probability Theorem. Let F and L denote the events “fair die selected”
and “loaded die selected,” respectively. Then

P (AB) = P (6 on first roll ∩ 6 on second roll)

= P (AB|F )P (F ) + P (AB|L)P (L)



ECE316 Notes-Winter 2017: A. K. Khandani 42

Conditional on either F or L, A and B are independent, so

P (AB) =

(
1

6

)(
1

6

)(
3

9

)
+

(
1

2

)(
1

2

)(
6

9

)
=

(
19

108

)
Similarly,

P (A) = P (A|F )P (F ) + P (A|L)P (L)

=

(
1

6

)(
3

9

)
+

(
1

2

)(
6

9

)
=

(
7

18

)
= P (B)

But note that

P (AB) =
19

108
=

57

324
̸= P (A) · P (B) =

(
7

18

)(
7

18

)
=

(
49

324

)
proving that A and B are not independent.

24. Laplace’s Rule of Succession. There are k+1 biased coins in a box. The ith coin will, when flipped,
turn up heads with probability i/k, i=0,1,. . . ,k. A coin is randomly selected from the box and is
then repeatedly flipped. If the first n flips all result in heads, what is the conditional probability that
the (n+1)st flip will do likewise?

Solution: Let Ei denote the event that the ith coin is initially selected, i=0,1,. . . ,k; let Fn denote
the event that the first n flips all result in heads; and let F be the event that the (n+1)st flip is a
head. The desired probability, P (F |Fn), is now obtained as follows,

P (F |Fn) =
k∑

i=0

P (F |FnEi)P (Ei|Fn)

Now, given that the ith coin is selected, it is reasonable to assume that the outcomes will be condi-
tionally independent with each one resulting in a head with probability i/k. Hence

P (F |FnEi) = P (F |Ei) =
i

k

Also,

P (Ei|Fn) =
P (EiFn)

P (Fn)

=
P (Fn|Ei)P (Ei)

k∑
j=0

P (Fn|Ej)P (Ej)

=
(i/k)n[1/(k + 1)]
k∑

j=0

(j/k)n[1/(k + 1)]
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Hence

P (F |Fn) =

k∑
i=0

(i/k)n+1

k∑
j=0

(j/k)n

But if k is large, we can use the integral approximations

1

k

k∑
i=0

(i/k)n+1 ≈
∫ 1

0
xn+1dx =

1

n+ 2

1

k

k∑
j=0

(j/k)n ≈
∫ 1

0
xndx =

1

n+ 1

and so, for k large,

P (F |Fn) ≈
n+ 1

n+ 2

25. A bag contains 3 white balls, 6 red balls and 3 black balls. Three balls are drawn at random, without
replacement. What is the probability that the three balls are the same color?

Solution: Let W be the event the three balls are all white, R the event the three balls are all red,
B the event the three balls are all black and C the event the balls are of the same color. Then by
the theorem on total probability,

P (C) = P (C|W )P (W ) + P (C|R)P (R) + P (C|B)P (B) =

[
1 ·
(
3

3

)
+ 1 ·

(
6

3

)
+ 1 ·

(
3

3

)]
· 1(

12

3

)

26. From a standard deck of 52 cards, one red one is taken. Thirteen cards are then chosen and found
to be of the same color. What is the probability they are black?

Solution: Given that the 13 cards are of the same color, they could be red (R) or black (B). Denote
by C the event that all 13 cards are of the same color. It is required to find P (B|C). By Bayes
theorem:

P (B|C) =
P (C|B)P (B)

P (C|B)P (B) + P (C|R)P (R)
=

(
26

13

)
/

(
51

13

)
(
26

13

)
/

(
51

13

)
+

(
25

13

)
/

(
51

13

) .

Since P (C|R) = P (C|B) = 1, then

P (B|C) =
1

1 +

(
25

13

)
/

(
26

13

) =
1

1 +
1

2

=
2

3
.

. and hence P (C) =

(
26

13

)
/

(
51

13

)
+

(
25

13

)
/

(
51

13

)
.
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27. A fair die is tossed. If the face shows i then a fair coin is tossed i times. What is the probability of
obtaining at least 3 heads on any given turn?

Solution: Let A be the event of obtaining at least three heads on any outcome of the experiment
and let Bi be the event of obtaining i on the toss of a die, i = 1, 2, · · · , 6. By the theorem on total
probability,

P (A) =
6∑

i=1

P (A|Bi)P (Bi) .

Now P (Bi) = 1/6 and P (A|B1) = P (A|B2) = 0 and

P (A|B3) =
1

8

P (A|B4) =

((
4

3

)
+

(
4

4

))(
1

2

)4

P (A|B5) =

((
5

3

)
+

(
5

4

)
+

(
5

5

))(
1

2

)5

P (A|B6) =

((
6

3

)
+

(
6

4

)
+

(
6

5

)
+

(
6

6

))(
1

2

)6

and the result follows.

28. If A and B are independent events and the probability that both A and B occur is 0.16 while the
probability that neither occur is 0.36, determine P (A) and P (B).

Solution: From the problem statement, P (AB) = P (A)P (B) = 0.16 and
P{(A ∪B)c} = 0.36 from which it follows that

P (A ∪B) = 0.64 = P (A) + P (B)− 0.16

which gives two equations in two unknowns:

(i) P (A) + P (B) = 0.80 (ii) P (A)P (B) = 0.16

which are easily solved to give P (A) = 0.40 and P (B) = 0.40.

29. Of three coins, 2 are two-headed and the other is fair. From these three coins, one is chosen at
random and tossed n times. If the results is all heads, what is the probability the coin tossed is
two-headed?

Solution: Let A be the event the coin is fair, B the event the coin is two-headed and C the event
that n heads are obtained in n tosses of the coin. Then P (C|B) = 1, P (C|A) = 1/2n, P (A) = 1/3
and P (B) = 2/3. By Bayes theorem:

P (B|C) =
P (C|B)P (B)

P (C|B)P (B) + P (C|A)P (A)
=

1 · 2
3

1 · 2
3
+

1

2n
· 1
3

=
2n+1

2n+1 + 1
.



ECE316 Notes-Winter 2017: A. K. Khandani 45

30. A fair coin is thrown n times.

(a) Show that the conditional probability of a head on any specified trial, given a total of k heads
over the n trials, is k/n.

(b) Suppose 0 ≤ r ≤ k and 0 < m < n are integers. Show that the conditional probability of r heads
over the first m trials, given a total of k heads over all n trials, is(

m

r

)(
n−m

k − r

)
/

(
n

k

)
.

Solution: (a) Let Ai be the event that a head is obtained on the ith trial and Bk the event of
obtaining k heads in n trials. Then

P (AiBk) =

(
n− 1

k − 1

)
1

2n−1

1

2
and P (Bk) =

(
n

k

)
1

2n

Thus

P (Ai|Bk) =

(
n− 1

k − 1

)
1

2n(
n

k

)
1

2n

=
k

n
.

(b) Let Cr be the event of obtaining r heads in the first m places. Then P (BkCr) is the probability
of k heads in n throws with r of the k among the first m. Then

P (Cr|Bk) =

(
m

r

)(
n−m

k − r

)
2n

/

(
n

k

)
2n

=

(
m

r

)(
n−m

k − r

)
(
n

k

) .

31. Stores A,B and C have 50, 75 and 100 employees of which 50%, 60% and 70% respectively, are women.
Resignations are equally likely among all employees, regardless of gender. One employee resigns and
this is a woman. What is the probability she worked in store C?

Solution: By straightforward application of Bayes theorem:

P (C|W ) =
P (W |C)P (C)

P (W |C)P (C) + P (W |A)P (A) + P (W |B)P (B)

=
0.7× (100/225)

0.7× (100/225) + 0.5× (50/225) + 0.6× (75/225)

=
70

70 + 25 + 45
=

1

2
.

32. Two hunters shoot at a deer which is hit by exactly one bullet. If the first hunter hits his target with
probability 0.3 and the second with probability 0.6, what is the probability the second hunter killed
the deer? (The answer is not 2/3.)

Solution: Let H2 be the event that hunter 2 shot the deer and Hc
2 the event that hunter 2 did not

shoot the deer. Let B be the event that only one hunter shot the deer. Then P (B) = 0.3 × 0.4 +
0.7× 0.6 = 0.12 + 0.42 = 0.54 and the conditional probability

P (H2|B) =
0.42

0.12 + 0.42
=

42

54
=

7

9
.
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33. You are about to have an interview for the Harvard Law School. 60% of the interviewers are conser-
vative and 40% are liberal. 50% of the conservatives smoke cigars but only 25% of the liberals do.
Your interviewer lights up a cigar. What is the probability he is a liberal?

Solution: Let L = liberal and C = conservative and S = smoker. Then by Bayes’ theorem:

P (L|S) =
P (S|L)P (L)

P (S|L)P (L) + P (S|C)P (C)

=
0.25× 0.4

0.25× 0.4 + 0.5× 0.6
= 0.25 .

34. One slot machine pays off 1/2 of the time while another pays off 1/4 of the time. A player picks
one of the machines and plays it six times, winning three of the times. What is the probability he is
playing the machine that pays off 1/4 of the time?

Solution: Let S1, S2 be slot machine 1 and 2 respectively, and W3,6 the event of winning 3 out of
6 with the machine being played. Then by Bayes theorem:

P (S2|W3,6) =
P (W3,6|S2)P (S2)

P (W3,6|S2)P (S2) + P (W3,6|S1)P (S1)

=

(
6

3

)
(1/4)3(3/4)3(1/2)(

6

3

)
(1/4)3(3/4)3(1/2) +

(
6

3

)
(1/2)6(1/2)

=
27

91
.

35. Consider a line AB divided into two parts by a point C, where the length of segment AC is greater
than or equal to the length of segment CB (see the following figure). Suppose a point X is chosen
at random along the segment AC and a point Y is chosen at random along the segment CB. Let
x and y denote the distances of X and Y from A and B, respectively. What is the probability the
three segments AX, XY , and Y B will fit together to form a triangle?

Y

yx

A X C B

ba

Solution: The key here is to recognize that three conditions must be met if the segments are to
form a triangle - each segment must be shorter than the sum of the other two:

1. x < (a+ b− x− y) + y = a+ b− x

2. a+ b− x− y < x+ y

3. y < x+ (a+ b− x− y)

Intuitively, it seems clear that the probability of the segments forming a triangle will be greatest when
C is the midpoint of AB: As b gets smaller, y tends to get smaller, and the likelihood of condition
(2) being true diminishes.
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To make the argument precise, we need to determine what proportion of the sample space S =
{(x, y) : 0 ≤ x ≤ a, 0 ≤ y ≤ b} is included in the (x,y)-values satisfying conditions (1),(2), and (3).

Note that

1. x < (a+ b− x− y) + y ⇒ x <
a+ b

2

2. a+ b− x− y < x+ y ⇒ x+ y >
a+ b

2

3. y < x+ (a+ b− x− y) ⇒ y <
a+ b

2

The (x,y)-values satisfying all three of these inequalities make up the interior of the triangle shown
in the figure. Call that interior E.

0 ((a+b)/2,0)

y

x
a

(0,(a+b)/2)

b

((a+b)/2,(a+b)/2)

E

S

x+y=(a+b)/2

E 

U

S

It follows that the probability of the segments forming a triangle will equal the area of E ∩S divided
by the area of S:

P (segments form triangle) =
1
2b

2

ab

=
b

2a

As expected, the probability is greatest when C is midway between A and B, and it decreases fairly
rapidly as C approaches B.

36. Consider the following connection of switches:

Define the event: Ei, i = 1, 2, 3, 4 as: Switch Si is closed. Assume that P (E1) = P (E2) = P (E3) =
P (E4) = a. Define the event E as the event that point A is connected to point B. Compute the
probability of the event E .

Solution: Consider the connection of switches shown in the above figure. Define the events:

E1: Switch S1 is closed. =⇒ Ec
1: Switch S1 is open.

E2: Switch S2 is closed. =⇒ Ec
2: Switch S2 is open.
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A

S1
S2

BS4

S3

E3: Switch S3 is closed. =⇒ Ec
3: Switch S3 is open.

E4: Switch S4 is closed. =⇒ Ec
4: Switch S4 is open.

Assume that P (E1) = P (E2) = P (E3) = P (E4) = a, and consequently, P (Ec
1) = P (Ec

2) = P (Ec
3) =

P (Ec
4) = 1− a.

Define the event E as the event that point A is connected to point B. What is P (E).

First method:

E = [(E1E2) ∪ E3]E4

P (E) = P [(E1E2) ∪ E3]× P (E4)

P [(E1E2) ∪ E3] = P (E1E2) + P (E3)− P (E1E2E3) = a+ a2 − a3

P (E) = a(a+ a2 − a3) = a2 + a3 − a4

Second method (fallacy):

P{E4[E3 ∪ (E1E2)]} = P{E4[(E3 ∪ E1)(E3 ∪ E2)]}
P (E3 ∪ E1) = P (E3) + P (E1)− P (E3E1) = a+ a− a2 = 2a− a2

P (E3 ∪ E2) = P (E3) + P (E2)− P (E3E2) = a+ a− a2 = 2a− a2

P{E4[(E3 ∪ E1)(E3 ∪ E2)]} = P (E4)× P (E3 ∪ E1)× P (E3 ∪ E2) = a(2a− a2)2

It is seen that the two answers are different. Why?!

Third method:

Ec = {[(E1E2) ∪ E3]E4}c = Ec
4 ∪ {[E3 ∪ (E1E2)]}c = Ec

4 ∪ [Ec
3(E

c
1 ∪ Ec

2)]

P (Ec) = P{Ec
4 ∪ [Ec

3(E
c
1 ∪ Ec

2)]} = P (Ec
4) + P [Ec

3(E
c
1 ∪ Ec

2)]− P [Ec
4E

c
3(E

c
1 ∪ Ec

2)]

P (Ec
4) = 1− a

P (Ec
1 ∪ Ec

2) = (1− a) + (1− a)− (1− a)2 = 1− a2 (this is indeed equal to P [(E1E2)
c]).

P [Ec
4E

c
3(E

c
1 ∪ Ec

2)] = (1− a)2(1− a2)

Substituting results in

P (Ec) = P (Ec
4)+P [Ec

3(E
c
1 ∪Ec

2)]−P [Ec
4E

c
3(E

c
1 ∪Ec

2)] = (1− a)+ (1− a)(1− a2)− (1− a)2(1− a2) =
1− (a2 + a3 − a4).

Which is in agreement with the previous result.
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Fourth method:

Let 1 correspond to a closed switch and 0 correspond to an open switch. Using these notations, the
sample space is represented as:

S4 S3 S2 S1

e1 0 0 0 0
e2 0 0 0 1
e3 0 0 1 0
e4 0 0 1 1
e5 0 1 0 0
e6 0 1 0 1
e7 0 1 1 0
e8 0 1 1 1
e9 1 0 0 0
e10 1 0 0 1
e11 1 0 1 0

OK e12 1 0 1 1 a3(1− a)
OK e13 1 1 0 0 a2(1− a)2

OK e14 1 1 0 1 a3(1− a)
OK e15 1 1 1 0 a3(1− a)
OK e16 1 1 1 1 a4

The e1, e2, . . . , e16 are the elementary events.

P (E) = P (e12 ∪ e13 ∪ e14 ∪ e15 ∪ e16).

As the elementary events are disjoint, the probabilities add. As a result,

P (E) = P (e12)+P (e13)+P (e14)+P (e15)+P (e16) = a3(1−a)+a2(1−a)2+a3(1−a)+a3(1−a)+a4 =
a2 + a3 − a4.

Which is in agreement with the previous result.
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4 Random Variables

4.1 Random Variables

It is frequently the case when an experiment is performed that we are mainly interested in some function of
the outcome as opposed to the actual outcome itself. For instance, in tossing dice we are often interested
in the sum of the two dice and are not really concerned about the separate values of each die. These
quantities of interest, or more formally, these real-valued functions defined on the sample space, are known
as random variables.

Random Variable: A random variable is a number which selects value in an unpredictable manner. In
other words, a random variable is the result of a random experiment whose outcome is a number. A more
formal definition of a random variable is as follows.

Let S be the sample space associated with some experiment E. A random variable X is a function that
assigns a real number X(s) to each elementary event s ∈ S. In this case, as the outcome of the experiment,
i.e., the specific s, is not predetermined, then the value of X(s) is not fixed. This means that the value of
the random variable is determined by the specific outcome of the experiment.

The domain of a random variable X is the sample space S and the range space RX is a subset of the real
line, i.e., RX ⊆ ℜ.

There are two types of random variables: discrete and continuous.

It is conventional to use capital letters such as X,Y, S, T, . . ., to denote a random variable and the corre-
sponding lower case letter, x, y, s, t, . . ., to denote particular values taken by the random variable.

4.2 Discrete Random Variables

A random variable that can take on at most a countable number of possible values is said to be discrete.

Probability mass function: For a discrete random variable X, we define the probability mass function
p(a) of X by

p(a) = P{X = a}
Since X must take on one of the values xi, we have∑

i

p(xi) =
∑
i

p{x = xi} = 1

Cumulative Distribution Function (CDF): For the random variable X, we define the function F (x)
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by the equation,

F (x) = P (X ≤ x).

And for any a
F (a) =

∑
all x≤a

p(x)

4.3 Expected Value

The expected value of the discrete random variable X, which we denote by E(X), is given by

E(X) =
∑
all x

xp(x)

4.4 Expectation of a Function of a Random Variable

A function of a discrete random variable X, say Y = g(X), is also a discrete random variable. We have,

E(Y ) = E[g(X)] =
∑
i

g(xi)p(xi)

If a and b are constants, then
E[aX + b] = aE[X] + b

4.5 Variance

The variance of the random variable X, which we denote by Var(X), is given by,

Var(X) = E{[X − µ]2}
= E[X2]− µ2

where µ = E[X]
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For any two constants a and b
Var(aX + b) = a2Var(X)

Standard deviation is defined as the square root of the variance. That is,

SD(X) =
√
Var(X)

Note: Unlike expected value of the sum which is always equal to the sum of the expected values, the
variance of a sum is not necessarily equal to the sum of variances. A sufficient condition under which
variance of the sum is equal to the sum of the variances, is that the random variables being summed are
independent of each other. Note that variance of a constant is zero, and scaling a random variable by a
constant a, multiples its variance by a2.

4.6 The Bernoulli and Binomial Random Variables

Bernoulli random variable: The Bernoulli random variable corresponds to an event E which has two
possible outcomes, success (X = 1) and failure (X = 0) and its probability mass function is

p(0) = P{X = 0} = 1− p

p(1) = P{X = 1} = p

for 0 ≤ p ≤ 1. Event E is also called a binary event, as it has two possible outcomes.
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Binomial random variable: We repeat the Bernoulli experiment n times. The n trials are independent.
Such an independent repetition of the same experiment under identical conditions is called a Bernoulli
Trial. Let random variable X denotes the total number of times that a binary event E has occurred
(success). We have,

p(i) =

(
n

i

)
pi(1− p)n−i, i = 0, 1, . . . , n

The binomial coefficient enters here to account for the total number of possible ways that the i times of
success can be located among the n times of performing the experiment. We let 0! = 1 by definition.

4.6.1 Properties of Binomial Random Variables

The mean of the distribution is:

E[X] =
n∑

i=0

iP (i) =
n∑

i=1

i

(
n
i

)
pi(1− p)n−i

=
n∑

i=1

i
n!

i!(n− i)!
pi(1− p)n−i

=
n∑

i=1

n(n− 1)!

(i− 1)!(n− i)!
pi(1− p)n−i

= n
n∑

i=1

(n− 1)!

(i− 1)!(n− i)!
pi(1− p)n−i substituting j = i− 1, we obtain,

= n
n−1∑
j=0

(n− 1)!

j!(n− 1− j)!
pj+1(1− p)n−1−j

= np
n−1∑
j=0

(n− 1)!

j!(n− 1− j)!
pj(1− p)n−1−j

= np
n−1∑
j=0

(
n− 1
j

)
pj(1− p)n−1−j = np(p+ 1− p)n−1 = np(1)n−1 = np

The variance of the distribution can be computed similarly. The result is

Var(X) = np(1− p)

If X is a binomial random variable with parameters (n, p), as k goes from 0 to n, P{X = k} first increases
monotonically and then decreases monotonically, reaching its largest value when k is the largest integer
less than or equal to (n+ 1)p.
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4.6.2 Computing the Binomial Distribution Function

Suppose that X is binomial with parameters (n, p). The key to computing its distribution function

P{X ≤ i} =
i∑

k=0

(
n

k

)
pk(1− p)n−k i = 0, 1, . . . , n

is to utilize the following relationship between P{X = k + 1} and P{X = k},

P{X = k + 1} =
p

1− p

n− k

k + 1
P{X = k}

4.7 The Poisson Random Variable

A random variable X, taking one of the values 0, 1, 2, . . . is said to be a Poisson random variable with
parameter λ if for some λ > 0,

p(i) = P{X = i} = e−λλ
i

i!

The Poisson random variable is used as an approximation of a binomial random variable with parameter
(n, p) when n is large and p is small so that np is in moderate size. The parameter of the approximated
Poisson random variable is λ = np. That is,

P{X = i} =
n!

(n− i)!i!
pi(1− p)n−i

=
n!

(n− i)!i!

(
λ

n

)i (
1− λ

n

)n−i

=
n(n− 1) · · · (n− i+ 1)

ni

λi

i!

(1− λ/n)n

(1− λ/n)i

Now, for n large and λ moderate,(
1− λ

n

)n

≈ e−λ n(n− 1) · · · (n− i+ 1)

ni
≈ 1

(
1− λ

n

)i

≈ 1

Hence, for n large and λ moderate,

P{X = i} = e−λλ
i

i!
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The mean of the distribution is:

E[X] =
∞∑
i=0

ie−λλi

i!

= λ
∞∑
i=1

ie−λλi−1

(i− 1)!

= λe−λ
∞∑
j=0

λj

j!
by substituting j = i− 1,

= λ since
∞∑
j=0

λj

j!
= eλ

The variance of the distribution can be computed similarly. The result is

Var(X) = λ

The expected value and variance of a Poisson random variable are both equal to its parameter λ.

4.7.1 Computing the Poisson Distribution Function

If X is Poisson with parameter λ, then

P{X = i+ 1}
P{X = i}

=
e−λλi+1/(i+ 1)!

e−λλi/(i)!
=

λ

(i+ 1)

Starting with P{X = 0} = e−λ, we can use the above equation to compute successively

P{X = 1} = λP{X = 0}
P{X = 2} =

λ

2
P{X = 1}

...

P{X = i+ 1} =
λ

i+ 1
P{X = i}

4.8 Other Discrete Probability Distributions

Geometric Distribution: Suppose we repeat an experiment, independently, until the event E (success)
occurs. What is the probability that the first success occurs on the nth try if, on any one try, we have
P (E) = p?

P{X = n} = (1− p)n−1p, n = 1, 2, . . .
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This is referred to as the Geometric Distribution. We can show that,

E[X] =
1

p
, Var(X) =

1− p

p2

The negative binomial random variable: Suppose we repeat an experiment. Let X be the number of
trials to obtain the first r success. We can show that,

P (X = n) =

(
n− 1

r − 1

)
pr(1− p)n−r, n = r, r + 1, . . .

This is called the negative binomial Distribution. The binomial coefficient enters here to account for the
total number of possible ways that the r − 1 times of success can be located among the n − 1 times
of performing the experiment. Note that the last experiment has definitely resulted in a success, and
consequently, we only consider the number of ways that the first r − 1 success are located among the first
n− 1 trials. We have,

E[X] =
r

p

and

Var(X) = r
(1− p)

p2

The hypergeometric random variable: Assume that N items are in an urn, numbered 1, 2, . . . , N .
Suppose that items 1, 2, . . . ,m are white and the remaining N −m items are black. Assume further that
n items from the N are chosen at random. The probability that, in a draw of n items, we obtain exactly i
white items is equal to:

P{X = i} =

(
m

i

)(
N −m

n− i

)
(
N

n

) , i = 0, 1, 2, . . . ,min(n,m)

This is referred to as the Hypergeometric Distribution.
The mean and variance of the Hypergeometric Distribution are equal to:

E[X] =
nm

N
, Var(X) =

N − n

N − 1
np(1− p),where p = m/N
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4.9 Properties of Cumulative Distribution Function

Some Properties of the cumulative distribution function (c.d.f.) F are

1. F is a nondecreasing function; that is, if a < b, then F (a) ≤ F (b).

2. lim
b→∞

F (b) = 1.

3. lim
b→−∞

F (b) = 0.

4. F is right continuous. That is, for any b and any decreasing sequence bn, n ≥ 1, that converges to b,
lim
n→∞

F (bn) = F (b).

5. P{a < X ≤ b} = F (b)− F (a)
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4.10 Some Solved Problems

1. A large lot of items is known to contain a fraction θ defective. Let X denote the random variable
for the number of items to be inspected to obtain the second defective item. Find the probability
distribution and mean of X.

Solution: If the second defective item is drawn on the ith draw, then the first defective can be in
one of the first (i− 1) positions. The probability that X = i is then

P (X = i) = (i− 1)(1− θ)i−2θ2 , i = 2, 3, · · · .

To see that this is a probability distribution, note the following formulae, obtained by differentiating
the first one two times:

∞∑
i=0

xi =
1

1− x
,

∞∑
i=1

ixi−1 =
1

(1− x)2
,

∞∑
i=2

i(i− 1)xi−2 =
2

(1− x)3

It follows readily from these relationships that:

∞∑
i=2

(i− 1)θ2(1− θ)i−2 = 1 and E(X) =
∞∑
i=2

iP (X = i) =
∞∑
i=2

i(i− 1)θ2(1− θ)i−2 =
2

θ

2. Find the mean and variance of the Poisson random variable Y if it is three times as likely that Y = 4
than Y = 2.

Solution:

Since, by the problem statement,

P (Y = 4) = e−λλ
4

4!
= 3e−λλ

2

2!
→ λ = 6

Then E(Y ) = Var(Y ) = λ = 6 (property of the Poisson distribution).

3. The discrete random variable U has a geometric distribution of the form

P (U = j) = aαj , j = 0, 1, 2, · · ·

If P (U ≥ 4) = 1/256, find P (U ≥ 2).

Solution: Since the given distribution must sum to unity we have
∞∑
j=0

aαj = 1 = a/(1 − α) which

implies that a = 1− α. Now

P (U ≥ 4) =
∞∑
j=4

aαj = 1/256 =
aα4

1− α
=

1

256
⇒ α =

1

4

Then P (U ≥ 2) = (1− α)α2/(1− p) = 1/16.
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4. Z is a discrete random variable with probability distribution

P (Z = j) = aj2−(j−1) , j = 1, 2, · · ·

For what value of a is this a distribution?

Solution: Notice that for | x |< 1,
∞∑
j=0

xj = 1/(1−x). Differentiating both sides of this relationship

wrt x gives
∞∑
j=1

jxj−1 = 1/(1− x)2. Applying this to the problem gives:

∞∑
j=1

aj2−(j−1) =
a(

1− 1

2

)2 = 1

which gives 4a = 1 or a = 1/4.

5. The number of trials, X, to obtain the first defective from a large lot of items, has a geometric
distribution with variance 2. What is the probability it takes more than 4 draws to obtain the first
defective?

Solution: The mean of a geometric distribution is 1/θ and the variance is (1−θ)/θ2. If (1−θ)/θ2 = 2
then θ = 1/2. The probability X > 4 is then

P (X > 4) =
∞∑
i=5

θi−1(1− θ) =
θ4(1− θ)

1− θ
= θ4 =

1

16
.

6. The number of emissions from a radioactive source, Z, in a one hour period, is known to be a Poisson
random variable. If it is known that the probability there are 10 emissions in the one hour period,
is exactly the same as the probability there are 12 emissions, what is the probability there are no
emissions in the one hour period?

Solution: If P (X = 10) = exp(−λ)λ10/10! = exp(−λ)λ12/12! then λ2 = 132. it follows that

P (X = 0) = e−λ = e−
√
132 .

7. In Lotto 649, a player chooses 6 distinct numbers from 1 to 49. This set is compared to 6 other
numbers chosen at random by the house and prizes are awarded according to the number matched.

(a) What is the probability that k of the numbers match, k = 3, 4, 5, 6. Calculate the answer to 8
significant digits.

(b) What is the probability that all six numbers chosen by the house are from 1 to 9?

(c) What is the probability that 2 of the numbers chosen by the house are from 1 to 9 and one each
is from 10 to 19, 20 to 29, 30 to 39 and 40 to 49 respectively?

Solution: (a) Let X be the number of the player’s 6 numbers that match the house’s 6 numbers.
Then X has a hypergeometric distribution and

P (X = k) =

(
6

k

)(
43

6− k

)
(
49

6

)
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which is evaluated as:

P (X = 3) = .017650404 P (X = 4) = .00096861972
P (X = 5) = .000018449899 P (X = 6) = 7.1511238× 10−8

(b) The probability all six numbers chosen by the house are from 1 to 9 is:(
9

6

)
(
49

6

) = 6.00694403× 10−6 .

(c) The required probability is: (
9

2

)(
10

1

)4

(
49

6

) = 0.025744046 .

8. In the game of Keno, a player chooses 5 distinct numbers from 1 to 100, inclusive. A machine then
chooses 10 numbers, again from 1 to 100. Let X be the number of the player’s numbers chosen by
the machine. Find the probability distribution of X.

Solution: This is a simple hypergeometric distribution:

P (X = k) =

(
10

k

)(
90

5− k

)
(
100

5

) .

9. Consider a random experiment in which the probability of certain outcome, say A, is equal to p. The
experiment is performed for n times. Let X denote the total number of times that A has happened.
Compute the average and the standard deviation of X.

Solution: Consider an experiment having only two possible outcomes, A and Ā, which are mutually
exclusive. Let the probabilities be P (A) = p and P (Ā) = 1 − p = q. The experiment is repeated n
times and the probability of A occurring i times is

Pi =

(
n

i

)
piqn−i

where

(
n

i

)
is the binomial coefficient,

(
n

i

)
=

n!

i!(n− i)!

The binomial coefficient enters here to account for the total number of possible ways to combine n
items taken i at a time, with all possible permutations permitted. We let 0! = 1 by definition.



ECE316 Notes-Winter 2017: A. K. Khandani 61

This is called a Binomial Random Variable. It is straightforward to show that the mean and the
variance of a Binomial Random Variable are equal to,

mean = np & σ2 = np(1− p) = m(1− p)

To compute the mean, we have,

mean =
n∑

i=0

iPi =
n∑

i=1

i

(
n

i

)
piqn−i

=
n∑

i=1

i
n!

i!(n− i)!
piqn−i

=
n∑

i=1

n(n− 1)!

(i− 1)!(n− i)!
piqn−i

= n
n∑

i=1

(n− 1)!

(i− 1)!(n− i)!
piqn−i substituting j = i− 1, we obtain,

= n
n−1∑
j=0

(n− 1)!

j!(n− 1− j)!
pj+1qn−1−j

= np
n−1∑
j=0

(n− 1)!

j!(n− 1− j)!
pjqn−1−j

= np
n−1∑
j=0

(
n− 1

j

)
pjqn−1−j = np(p+ q)n−1 = np(1)n−1 = np

The standard deviation can be computed similarly.

10. A person repeatedly shoots at a target and stops as soon as he hits it. The probability of hitting the
target is 2/3 each time. The shots are fired independently, and hence may be regarded as a sequence
of repeated trials. Determine the probability that the target is hit on the kth attempt.

Solution: The event in which we are interested happens if the target is missed k − 1 times and
then is hit the kth time. The probability of missing the target with the first shot is 1 − 2/3 = 1/3,
and likewise in each of the following shots. Because of the independence, the probability we seek is
(1/3)k−1(2/3).

11. Russian roulette is played with a revolver equipped with a rotatable magazine of six shots. The
revolver is loaded with one shot. The first duelist, A, rotates the magazine at random, points the
revolver at his head and presses the trigger. If, afterwards, he is still alive, he hands the revolver to
the other duelist, B, who acts in the same way as A. The players shoot alternately in this manner,
until a shot goes off. Determine the probability that A is killed.

Solution: Let Hi be the event that “a shot goes off at the ith trial”. The events Hi are mutually
exclusive. The event Hi occurs if there are i− 1 “failures” and then one “success”. Hence, we get,

P (Hi) =

(
5

6

)i−1 1

6

The probability we want is given by

P = P (H1 ∪H3 ∪H5 ∪ · · ·) = 1

6

[
1 +

(
5

6

)2

+

(
5

6

)4

+ · · ·
]
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=
1

6
· 1

1−
(
5
6

)2 =
6

11

Hence the probability that B loses his life is 1 − 6/11 = 5/11; that is, the second player has a
somewhat greater chance of surviving, as might be expected.

12. In a food package there is a small prize which can be of N different types. All types are distributed
into the packages at random with the same probability. A person buys n packages in a shop. What
is the probability that he obtains a complete collection of presents?

Solution: Denote the event in question by H and consider its complement H̄, which is the event
that at least one type is missing. We then have

P (H̄) = P

(
N∪
1

Ai

)
,

where Ai=“type no. i is missing”. We now utilize the same addition formula for the union of some
events. It is evident that

P (Ai1Ai2 ...Air) =

(
1− r

N

)n

for the probability that a given package does not contain types nos. i1, i2, ..., ir is 1− r/N .
Hence we find

1− P (H) = P (Hc) = N

(
1− 1

N

)n

−
(
N

2

)(
1− 2

N

)n

+ · · ·

+(−1)N−1

(
N

N

)(
1− N

N

)n

13. Suppose we roll a die repeatedly until a 6 occurs, and let N be the number of times we roll the die.
Compute the average value and the variance of N .

Solution: Using × to denote “not a 6”, we have

P (N = 1) = P (6) =
1

6

P (N = 2) = P (× 6) =
5

6
· 1
6

P (N = 3) = P (× × 6) =
5

6
· 5
6
· 1
6

From the first three terms it is easy to see that for k ≥ 1

P (N = k) = P (×on k-1 rolls then 6) =

(
5

6

)k−1 1

6

Generalizing, we see that if we are waiting for an event of probability p, the number of trials needed,
N , has the following distribution,

P (N = k) = (1− p)k−1p for k = 1, 2, . . .
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since {N = k} occurs exactly when we have k − 1 failures followed by a success. This is called a
Geometric Distribution and as we will see in the lecture, it has,

E(N) = 1/p & V ar(N) = (1− p)/p2

These values can be easily obtained using the second and the third formulas given in your sheet of
“Some useful relationships”.

14. Suppose that an airplane engine will fail, when in flight, with probability 1 − p independently from
engine to engine. Suppose that the airplane will make a successful flight if at least 50 per cent of its
engines remain operative. For what values of p is a 4-engine plane preferable to a 2-engine plane?

Solution: As each engine is assumed to fail or function independently of what happens with the other
engines, it follows that the number of engines remaining operative is a binomial random variable.
Hence the probability that a 4-engine plane makes a successful flight is(

4

2

)
p2(1− p)2 +

(
4

3

)
p3(1− p) +

(
4

4

)
p4(1− p)0 = 6p2(1− p)2 + 4p3(1− p) + p4

whereas the corresponding probability for a 2-engine plane is(
2

1

)
p(1− p) +

(
2

2

)
p2 = 2p(1− p) + p2

Hence the 4-engine plane is safer if

6p(1− p)2 + 4p2(1− p) + p3 ≥ 2− p

which simplifies to

3p3 − 8p2 + 7p− 2 ≥ 0 or (p− 1)2(3p− 2) ≥ 0

which is equivalent to

3p− 2 ≥ 0 or p ≥ 2

3

Hence the 4-engine plane is safer when the engine success probability is at least as large as
2

3
, whereas

the 2-engine plane is safer when this probability falls below
2

3
.

15. Ten hunters are waiting for ducks to fly by. When a flock of ducks flies overhead, the hunters fire at
the same time, but each chooses his target at random, independently of the others. If each hunter
independently hits his target with probability p, compute the expected number of ducks that escape
unhurt when a flock of size 10 flies overhead.

Solution: Let Xi equal 1 if the ith duck escapes unhurt and 0 otherwise, i = 1, 2, . . . , 10. The
expected number of ducks to escape can be expressed as

E[X1 + · · ·+X10] = E[X1] + · · ·+E[X10]
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To compute E[Xi] = P (Xi = 1), we note that each of the hunters will, independently, hit the ith
duck with probability p/10 and so

P (Xi = 1) =

(
1− p

10

)10

Hence

E[X] = 10

(
1− p

10

)10

16. A fair coin is to be tossed until a head comes up for the first time. What is the chance of that
happening on an odd-numbered toss?

Solution: Suppose we let P (k) denote the probability that the first head appears on the kth toss.

Since the coin was presumed to be fair, P (1) =
1

2
. Furthermore, we would expect half of the coins

that showed a tail on the first toss to come up heads on the second, so, intuitively, P (2) =
1

4
. In

general, P (k) =

(
1

2

)k

, k = 1, 2, . . ..

Let E be the event “first head appears on an odd-numbered toss.” Then

P (E) = P (1) + P (3) + P (5) + · · ·

=
∞∑
i=0

(
1

2

)2i+1

=
1

2

∞∑
i=0

(
1

4

)i

Recall the formula for the sum of a geometric series: If 0 < x < 1,

∞∑
k=0

xk =
1

1− x

Applying that result to P (E) gives

P (E) =
1

2
·

 1

1− 1

4


=

2

3

A similar computation would show that the probability of the first head appearing on an even-

numbered toss is
1

3
.

17. Two gamblers, A and B, each choose an integer from 1 to m (inclusive) at random. What is the
probability that the two numbers they pick do not differ by more than n?

Solution: It will be easier if we approach this problem via its complement. Let x and y denote the
numbers selected by A and B, respectively. The complement has two cases, depending on whether
x < y or x > y. Let us first suppose that x < y. Then, for a given x, the values of y such that
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y − x > n are y = x+ n+ 1, y = x+ n+ 2, . . ., and y = m, altogether, a range of m− n− x choices.
Summing over x, we find that the total number of (x,y)-pairs such that y−x > n reduces to the sum
of the first m− n− 1 integers:

m−n−1∑
x=1

(m− n− x) =
m−n−1∑

i=1

i =
(m− n− 1)(m− n)

2

By symmetry, the same number of (x,y)-pairs satisfies the second case: x > y and x− y > n. Thus
the total number of (x,y)-selections such that |x− y| > n is (m− n− 1)(m− n).
The sample space S contains m2 outcomes, all equally likely by assumption. It follows that

P (|x− y| ≤ n) = 1− (m− n− 1)(m− n)

m2

18. A secretary is upset about having to stuff envelopes. Handed a box of n letters and n envelopes, he
vents his frustration by putting the letters into the envelopes at random. How many people, on the
average, will receive the correct mail?

Solution: If X denotes the number of envelopes properly stuffed, what we are seeking is E(X).
Let Xi denote a random variable equal to the number of correct letters put into the ith envelope,
i = 1, 2, . . . , n. Then Xi equals 0 or 1, and

fXi(k) = P (Xi = k) =


1

n
for k=1

n− 1

n
for k=0

But X = X1 +X2 + · · ·+Xn and E(X) = E(X1) + E(X2) + · · ·+ E(Xn).
Furthermore, each of the Xi’s has the same expected value, 1/n:

E(Xi) =
1∑

k=0

k · P (Xi = k) = 0 · n− 1

n
+ 1 · 1

n
=

1

n

It follows that

E(X) =
n∑

i=1

E(Xi) = n

(
1

n

)
= 1

showing that, regardless of n, the expected number of properly stuffed envelopes is 1.

19. The honor count in a (13-card) bridge hand can vary from 0 to 37 according to the formula

Honor count = 4 · number of aces + 3 · number of kings

+ 2 · number of queens + 1 · number of jacks

What is the expected honor count of North’s hand?

Solution: If Xi, i=1,2,3,4, denotes the honor count for North, South, East, and West, respectively,
and if X denotes the analogous sum for the entire deck, we can write

X = X1 +X2 +X3 +X4

But
X = E(X) = 4 · 4 + 3 · 4 + 2 · 4 + 1 · 4 = 40

By symmetry, E(Xi) = E(Xj), i ̸= j, so it follows that 40 = 4 · E(X1), which implies that 10 is the
expected honor count of North’s hand.
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20. Let X1, X2, . . . , Xn denote a set of n independent observations made on a random variable X having
pdf fX(x). Let σ2 = E[(X−µ)2] denote the variance of X. The sample variance of the Xi’s, denoted
by S2, is defined as

S2 =
1

n− 1

n∑
i=1

(Xi −X)2

where X =
1

n

n∑
i=1

Xi. Show that E(S2) = σ2.

Solution: We know that if X is a random variable having mean µ and E(X2) finite, then

V ar(X) = E(X2)− µ2

Hence, we rewrite S2 in a form that enables us to apply the above equation:

E(S2) = E

[
1

n− 1

n∑
i=1

(Xi −X)
2

]

= E

[
1

n− 1

n∑
i=1

(X2
i − 2XiX +X

2
)

]

= E

[
1

n− 1

(
n∑

i=1

X2
i − 2X

n∑
i=1

Xi + nX
2

)]

=
1

n− 1

[
n∑

i=1

E(X2
i )− 2E

(
X

n∑
i=1

Xi

)
+ nE(X

2
)

]

But, we have:
E(X2

i ) = σ2 + µ2

and,

E

(
X

n∑
i=1

Xi

)
=

1

n

n∑
i=1

n∑
j=1

E(XiXj) =
1

n

[
(n2 − n)µ2 + n(σ2 + µ2)

]
= nµ2 + σ2

and,

E(X
2
) =

1

n2

n∑
i=1

n∑
j=1

E(XiXj) =
1

n2

[
(n2 − n)µ2 + n(σ2 + µ2)

]
=

1

n
(nµ2 + σ2) = µ2 +

σ2

n

Therefore:

E(S2) =
1

n− 1

[
n(σ2 + µ2)− 2nµ2 − 2σ2 + nµ2 + σ2

]
=

1

n− 1
(n− 1)σ2 = σ2

21. A chip is to be drawn at random from each of k urns, each holding n chips numbered 1 through n.
What is the probability all k chips will bear the same number?

Solution: If X1, X2, . . . , Xk denote the numbers on the 1st, 2nd,...,kth chips, respectively, we have,

P (Xi = α) =
1

n
, ∀Xi ∈ {X1, . . . , Xk}, ∀α ∈ [1, n]
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We are looking for the probability that X1 = X2 = · · · = Xk. Considering the independence of the
events, we obtain,

P (X1 = X2 = · · · = Xk = α) =

(
1

n

)k

, ∀α ∈ [1, n]

Adding up these values for different values of α, we obtain,

P (X1 = X2 = · · · = Xk) =
1

nk−1

22. Mean of a Hypergeometric Random Variable: If n balls are randomly selected from an urn
containing N white and M black balls, find the expected number of white balls selected.

Solution: Let X denote the number of white balls selected. It follows that

P (X = k) =

(
N

k

)(
M

n− k

)
(
N +M

n

)

Hence, assuming n ≤ N :

E[X] =

n∑
k=0

k

(
N

k

)(
M

n− k

)
(
N +M

n

)

However, we can obtain a simpler expression for E[X] by using the representation

X = X1 + · · ·+Xn

where

Xi =

{
1 if the ith ball selected is white
0 otherwise

Since the ith ball selected is equally likely to be any of the N +M , we have

E[Xi] =
N

M +N

and thus

E[X] = E[X1] + · · ·+ E[Xn] =
nN

M +N

23. Six balls are tossed independently into three boxes A, B, C. For each ball the probability of going
into a specific box is 1/3. Find the probability that box A will contain (a) exactly four balls, (b) at
least two balls, (c) at least five balls.

Solution: Here we have six Bernoulli trials, with success corresponding to a ball in box A, failure
to a ball in box B or C. Recall, a sequence of n Bernoulli trials is a sequence of n independent
observations each of which may result in exactly one of two possible situations, called “success” or
“failure”. At each observation the probability of success is p and the probability of failure is q = 1−p.
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Thus, referring the our problem we have that n =6, p =1/3, q =2/3, and so the required probabilities
are

(a) p(4) =

(
6

4

)(
1

3

)4(2
3

)2

(b) 1− p(0)− p(1) = 1−
(
2

3

)6

−
(
6

1

)(
1

3

)(
2

3

)5

(c) p(5) + p(6) =

(
6

5

)(
1

3

)5 (2
3

)
+

(
1

3

)6

24. A bubble gum company is printing a special series of baseball cards featuring r of the greatest base-
stealers of the past decade. Each player appears on the same number of cards, and the cards are
randomly distributed to retail outlets. If a collector buys n (≥ r) packets of gum (each containing
one card), what is the probability she gets a complete set of the special series?

Solution: Let Ai be the event the collector has no card for player i, i = 1, 2, . . . , r, and define A to
be the union, A = ∪r

i=1Ai. Then

P (collector has at least one card of each player) = 1− P (A)

To begin the derivation of P (A), notice that for any value of k, k = 1, 2, . . . , r,

P (A1A2 · · ·Ak) =

(
1− k

r

)n

Therefore, from the general Addition Law,

P

(
r∪

i=1

Ai

)
= P (A)

=
r∑

i=1

(
1− 1

r

)n

−
∑
i<j

(
1− 2

r

)n

+
∑

i<j<k

(
1− 3

r

)n

− · · ·+ (−1)r+1 · 0

=

(
r

1

)(
1− 1

r

)n

−
(
r

2

)(
1− 2

r

)n

+

(
r

3

)(
1− 3

r

)n

− · · ·+ (−1)r+1 · 0

Or more concisely,

P (A) =
r∑

k=1

(−1)k+1

(
r

k

)(
1− k

r

)n

25. An urn contains nine chips, five red and four white. Three are drawn out at random without
replacement. Let X denote the number of red chips in the sample. Find E(X), the expected number
of red chips selected.

Solution: We recognize X to be a Hypergeometric random variable, where

P (X = x) =

(
5

x

)(
4

3− x

)
(
9

3

) , x = 0, 1, 2, 3
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Hence,

E(X) =
∑
all x

x · P (X = x)

=
3∑

i=0

x ·

(
5

x

)(
4

3− x

)
(
9

3

)

= (0)

(
4

84

)
+ (1)

(
30

84

)
+ (2)

(
40

84

)
+ (3)

(
10

84

)
=

5

3

26. The following problem was posed and solved in the eighteenth century by Daniel Bernoulli. Suppose
that a jar contains 2N cards, two of them marked 1, two marked 2, two marked 3, and so on. Draw
out m cards at random. What is the expected number of pairs that still remain in the jar?

Solution: Define, i = 1, 2, . . . , N

Xi =

{
1 if the ith pair remains in the jar
0 otherwise

Now,

E[Xi] = P (Xi = 1)

=

(
2N − 2

m

)
(
2N

m

)

=

(2N − 2)!

m!(2N − 2−m)!

(2N)!

m!(2N −m)!

=
(2N −m)(2N −m− 1)

(2N)(2N − 1)

Hence the desired result is

E[X1 +X2 + · · ·+XN ] = E[X1] + · · ·+ E[XN ]

=
(2N −m)(2N −m− 1)

2(2N − 1)

27. Consider a jury trial in which it takes 8 of the 12 jurors to convict; that is, in order for the defendant to
be convicted, at least 8 of the jurors must vote him guilty. If we assume that jurors act independently
and each makes the right decision with probability θ , what is the probability that the jury renders
a correct decision?

Solution: The problem, as stated, is incapable of solution, for there is not yet enough information.
For instance, if the defendant is innocent, the probability of the jury’s rendering a correct decision is

12∑
i=5

(
12

i

)
θi(1− θ)12−i
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whereas, if he is guilty, the probability of a correct decision is

12∑
i=8

(
12

i

)
θi(1− θ)12−i

Therefore, if α represents the probability that the defendant is guilty, then, by conditioning on
whether or not he is guilty, we obtain that the probability that the jury renders a correct decision is

α
12∑
i=8

(
12

i

)
θi(1− θ)12−i + (1− α)

12∑
i=5

(
12

i

)
θi(1− θ)12−i

28. A single unbiased die is tossed independently n times. Let R1 be the number of 1’s obtained, and
R2 the number of 2’s. Find E(R1R2).

Solution: The indicator of an event A is a random variable IA and is defined as follows.

IA(ω) =

{
1 if ω ∈ A
0 if ω ̸∈ A

If Ai is the event that the ith toss results in a 1, and Bi the event that the ith toss results in a 2,
then

R1 = IA1 + · · ·+ IAn

R2 = IB1 + · · ·+ IBn

Hence

E(R1R2) =
n∑

i,j=1

E(IAiIBj )

Now if i ̸= j, IAi and IBj are independent; hence

E(IAiIBj ) = E(IAi)E(IBj ) = P (Ai)P (Bj) =
1

36

If i = j, Ai and Bj are disjoint, since the ith toss cannot simultaneously result in a 1 and a 2. Thus
IAiIBi = IAi∩Bi = 0. Thus

E(R1R2) =
n(n− 1)

36

since there are n(n− 1) ordered pairs (i,j) of integers ∈ {1, 2, . . . , n} such that i ̸= j.

29. A miner is trapped in a mine containing 3 doors. The first door leads to a tunnel that will take him
to safety after 3 hours of travel. The second door leads to a tunnel that will return him to the mine
after 5 hours of travel. The third door leads to a tunnel that will return him to the mine after 7
hours. If we assume that the miner is at all times equally likely to choose any one of the doors, what
is the expected length of time until he reaches safety?

Solution: Let X denote the amount of time (in hours) until the miner reaches safety, and let Y
denote the door he initially chooses. Now

E[X] = E[X|Y = 1]P (Y = 1) + E[X|Y = 2]P (Y = 2)

+E[X|Y = 3]P (Y = 3)

=
1

3
(E[X|Y = 1] + E[X|Y = 2] + E[X|Y = 3])
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However,

E[X|Y = 1] = 3

E[X|Y = 2] = 5 + E[X]

E[X|Y = 3] = 7 + E[X]

To understand why the above equation is correct, consider, for instance, E[X|Y = 2] and reason as
follows. If the miner chooses the second door, he spends 5 hours in the tunnel and then returns to
his cell. But once he returns to his cell the problem is as before; thus his expected additional time
until safety is just E[X]. Hence E[X|Y = 2] = 5 + E[X]. The argument behind the other equalities
in the above equation is similar. Hence

E[X] =
1

3
(3 + 5 + E[X] + 7 + E[X])

or
E[X] = 15
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5 Continuous Random Variables

5.1 Introduction

In Chapter 4 we considered discrete random variables, that is, random variables whose set of possible values
is either finite or countably infinite. However, there also exist random variables whose set of possible values
is uncountable. Two examples would be the time that a train arrives at a specified stop and the lifetime
of a transistor.
Definition: We say that X is a continuous random variable if there exists a nonnegative function f ,
defined for all real x ∈ (−∞,∞), having the property that for any set B of real numbers

P{X ∈ B} =

∫
B
f(x)dx

The function is called the probability density function (pdf) of the random variable X.
Since X must assume some value, f must satisfy

P{X ∈ (−∞,∞)} =

∫ ∞

−∞
f(x)dx = 1

Relation of CDF and pdf :

P{X < a} = P{X ≤ a} = F (a) =

∫ a

−∞
f(x)dx
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5.2 Expectation and Variance of Continuous Random Variables

Expected Value: The expected value of the continuous random variable X, which we denote by E(X),
is given by

E(X) =

∫ ∞

−∞
xf(x)dx

Expectation of a Function of a Continuous Random Variable: If X is a continuous random vari-
able with probability density function f(x), then for any real-valued function g,

E(g(X)) =

∫ ∞

−∞
g(x)f(x)dx

Property: For a nonnegative random variable Y ,

E(Y ) =

∫ ∞

0
P{Y > y}dy

Property: If a and b are constants, then

E[aX + b] = aE[X] + b

Variance of Continuous Random Variables: The Variance of the continuous random variable X,
which we denote by V (X), is given by

V (X) = E[(X − µ)2] = E(X2)− µ2

Where
µ = E[X]

E(X2) =

∫ ∞

−∞
x2f(x)dx
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5.3 The Uniform Random Variable

Uniform Random Variable: We sat that X is a uniform random variable on the interval (α, β) if its
probability density function is given by

f(x) =


1

β − α
if α < x < β

0 otherwise

Since F (a) =

∫ a

−∞
f(x)dx,

F (a) =


0 a ≤ α
a− α

β − α
if α < a < β

1 a ≥ β

For a uniformly distributed random variable X over (α, β)

E[X] =
α+ β

2

and

Var(X) =
(β − α)2

12
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5.4 Normal Random Variables

Normal Random Variable: We say thatX is a normal random variable, or simply thatX is normally distributed,
with parameters µ and σ2 if the density of X is given by

f(x) =
1√
2πσ

e−(x−µ)2/2σ2

For a normally distributed random variable X with parameters µ and σ2,

E[X] = µ

and
Var(X) = σ2

If X has the pdf N(µ, σ2), then Y = aX + b has the pdf

fY (y) =
1√
2πσ

exp

{
− 1

2σ2

[(
y − b

a

)
− µ

]2}
· 1

|a|
, −∞ < y < ∞

=
1√

2π|a|σ
· exp

[
−(y − aµ− b)2

2a2σ2

]
, −∞ < y < ∞

which is the pdf of N(aµ+ b, a2σ2). Note that a linear transformation of a normal random variable results
in a normal random variable.

Standard Normal Random Variable: Standard normal random variable is a normal random variable
with parameters (0, 1). That is,

fZ(z) =
1√
2π

e−z2/2

It is traditional to denote the cumulative distribution function of a standard normal random variable by
Φ(x). That is,

Φ(x) =
1√
2π

∫ x

−∞
e−y2/2dy
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For any normal random variable X with parameters (µ, σ2), Z =
X − µ

σ
is a normal random variable and

its cumulative distribution function can be written as

FX(a) = P{X ≤ a}
= P

(
X − µ

σ
≤ a− µ

σ

)
= Φ

(
a− µ

σ

)

5.4.1 The Normal Approximation to the Binomial Distribution

The DeMoivre-Laplace Limit Theorem: If Sn denotes the number of successes that occur when n
independent trials, each resulting in a success with probability p, are performed then, for any a < b,

P

{
a ≤ Sn − np√

np(1− p)
≤ b

}
→ Φ(b)− Φ(a)

as n → ∞.

5.5 Exponential Random Variable

Exponential Random Variable: A continuous random variable whose probability density function is
given, for some λ > 0, by

f(x) =

{
λe−λx if x ≥ 0
0 if x < 0
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is said to be an exponential random variable (or, more simply, is said to be exponentially distributed) with
parameter λ. The cumulative distribution F (a) of an exponential random variable is given by

F (a) = P{X ≤ a}
=

∫ a

0
λe−λxdx

= −e−λx

∣∣∣∣ a0
= 1− e−λa a ≥ 0

For an exponential random variable X with parameter λ,

E[X] =
1

λ

and

Var(X) =
1

λ2

Memoryless Random Variable: We say that a nonnegative random variable X is memoryless if

P{X > s+ t|X > t} = P{X > s} for all s, t ≥ 0

Since the above equation is satisfied when X is exponentially distributed, it follows that exponentially
distributed random variables are memoryless.
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5.5.1 Hazard Rate Functions

Hazard Rate Function: Consider a positive continuous random variable X that we interpret as being
the lifetime of some item, having distribution function F and density f . The hazard rate (sometimes called
the failure rate function λ(t) of F is defined by

λ(t) =
f(t)

F (t)
F (t) = 1− F

To interpret λ(t), suppose that the item has survived for a time t and we desire the probability that it will
not survive for an additional time dt. That is, consider P{X ∈ (t, t+ dt)|X > t}. Now

P{X ∈ (t, t+ dt)|X > t} =
P{X ∈ (t, t+ dt), X > t}

P{X > t}
=

P{X ∈ (t, t+ dt)}
P{X > t}

≈ f(t)

F (t)
dt

Thus, λ(t) represents the conditional probability intensity that a t-unit-old item will fail.
For an exponentially distributed random variable, the hazard rate function is constant.

5.6 Other Continuous Distributions

5.6.1 The Gamma Distribution

The Gamma Distribution: A continuous random variable is said to have a gamma distribution with
parameters (α, λ), λ > 0, and α > 0 if its density function is given by

f(x) =


λe−λx(λx)α−1

Γ(α)
if x ≥ 0

0 if x < 0

where Γ(α), called the gamma function, is defined as

Γ(α) =

∫ ∞

0
e−yyα−1dy

The integration by parts of Γ(α) yields that

Γ(α) = (α− 1)Γ(α− 1)

For integer values of n
Γ(n) = (n− 1)!



ECE316 Notes-Winter 2017: A. K. Khandani 79

When α is a positive integer, say α = n, the gamma distribution with parameters (α, γ) often arises as
the distribution of the amount of time one has to wait until a total of n events has occurred, when the
conditions told for Poisson distribution are valid. Let Tn denote the time at which the nth event occurs,
and note Tn is less then or equal to t if and only if the number of events that have occurred by time t is
at least n. That is, when N(t) equal to the number of events in [0, t],

P{Tn ≤ t} = P{N(t) ≥ n}

=
∞∑
j=n

P{N(t) = j}

=
∞∑
j=n

e−λt(λt)j

j!

where the final identity follows because the number of events in [0, t] has a Poisson distribution with
parameter λt. Differentiation of the above yields that the density function of Tn is as follows:

f(t) =
∞∑
j=n

e−λtj(λt)j−1λ

j!
−

∞∑
j=n

λe−λt(λt)j

j!

=
∞∑
j=n

λe−λt(λt)j−1

(j − 1)!
−

∞∑
j=n

λe−λt(λt)j

j!

=
λe−λt(λt)n−1

(n− 1)!

Note that when n = 1, this distribution reduces to the exponential.

For a gamma distributed random variable we have,

E[X] =
α

λ

and
Var(X) =

α

λ2
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5.7 The Distribution of a Function of a Random Variable

Theorem: Let X be a continuous random variable having probability density function fX . Suppose that
g(x) is a strictly monotone (increasing or decreasing), differentiable (and thus continuous) function of x.
Then the random variable Y defined Y = g(X) has a probability density function given by

fY (y) =

 fX [g−1(y)]

∣∣∣∣ ddyg−1(y)

∣∣∣∣ if y = g(x) for some x

0 if y ̸= g(x) for all x
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5.8 Some Solved Problems

1. Consider the probability density fX(x) = a e−b|x|, where X is a random variable whose allowable
values range from x = −∞ to x = +∞. Find (a) the cumulative distribution function FX(x), (b) the
relationship between a and b, and (c) the probability that the outcome X lies between 1 and 2.

Solution: (a) The cumulative distribution function is

F (x) = P (X ≤ x) =

∫ x

−∞
f(t) dt =

∫ x

−∞
a e−b|t| dt

=


a

b
ebx x ≤ 0

1

2
+

a

b
(1− e−bx) x ≥ 0

(b) In order that f(x) be a probability density, it is necessary that∫ +∞

−∞
f(x) dx =

∫ +∞

−∞
a e−b|x|dx =

2a

b
= 1

so that
a

b
=

1

2
.

(c) The probability that X lies in the range between 1 and 2 is

P (1 ≤ X ≤ 2) =
b

2

∫ 2

1
e−b|x| dx =

1

2
(e−b − e−2b)

2. A certain retailer for a petroleum product sells a random amount, X, each day. Suppose that X,
measured in hundreds of gallons, has the probability density function

fX(x) =

{
(3/8)x2 0 ≤ x ≤ 2

0 elsewhere.

The retailer’s profit turns out to be $5 for each 100 gallons sold (5 cents per gallon) if X ≤ 1 and $8
per 100 gallons if X > 1. Find the retailer’s expected profit for any given day.

Solution: Let g(X) denote the retailer’s daily profit. Then,

g(X) =

{
5X, 0 ≤ X ≤ 1
8X, 1 < X ≤ 2

We want to find expected profit, and

E[g(X)] =

∫ ∞

−∞
g(x)f(x)dx

=

∫ 1

0
5x

[(
3

8

)
x2
]
dx+

∫ 2

1
8x

[(
3

8

)
x2
]
dx

=
15

(8)(4)
[x4]10 +

24

(8)(4)
[x4]21

=
15

32
(1) +

24

32
(15)

=
(15)(25)

32
= 11.72
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3. Let X have the probability density function given by

fX(x) =

{
2x 0 < x < 1
0 elsewhere.

(a) Find the density function of U = 3X − 1.

(b) Find the density function of U = −4X + 3.

Solution: We know that for a given pdf, say fX(x), the probability that X is in a neighborhood of
∆x around x is given by fX(x)∆x. In this problem, the value of U is uniquely determined by the
value of X. Then, the probability that U is in a neighborhood of ∆u around u, i.e., fU (u)∆u, is
equal to the probability that X is in a neighborhood of ∆x around x = h−1(u) where h(x) = 3x− 1.
This means that

fU (u)∆u = fX [h−1(u)]∆x =⇒ fU (u) = fX [h−1(u)]
∆x

∆u
.

Here, we have,

x = h−1(u) =
u+ 1

3

and
∆x

∆u
=

dx

du
=

1

3

Thus,

fU (u) = fX [h−1(u)]
dx

du
= 2x

dx

du

= 2 · u+ 1

3
· 1
3

=
2(u+ 1)

9
− 1 < u < 2

= 0 elsewhere

The range of u (i.e., the range over which fU (u) is positive) is simply the interval 0 < x < 1
transformed to the u-axis by the function u = 3x− 1. This results in u ∈ [−1, 2].

For u = h(x) = −4x+ 3, we have,

x = h−1(u) =
3− u

4

and
dx

du
= −1

4

As the function h(x) is decreasing in x, we have ∆x/∆u = −dx/du (note that ∆x and ∆u are always
positive but dx and du may be positive or negative) and we can write,

fU (u) = fX [h−1(u)]

∣∣∣∣dxdu
∣∣∣∣ = 2x

∣∣∣∣dxdu
∣∣∣∣

= 2 · 3− u

4
· 1
4

=
3− u

8
− 1 < u < 3

= 0 elsewhere



ECE316 Notes-Winter 2017: A. K. Khandani 83

The range of u is equal to, u ∈ [−1, 3].

4. Consider a random variable X with the following pdf:

fX(x) = 1− a|x|, |x| ≤ 1/a, fX(x) = 0, otherwise

(a) Find the constant a and compute the mean and the standard deviation of X.

(b) The random variable X is applied to a “full-wave” rectifier whose output-input gain character-
istic is y = b|x|. Determine the mean and standard deviation of the output random variable.

(c) The random variable X is applied to a “half-wave” rectifier whose output-input gain character-
istic is y = b|x|, x ≥ 0 and y = 0, x < 0. Determine the mean and standard deviation of the
output random variable.

Solution: The pdf of X is shown in the following figure.

1

−1/a 1/a

Figure 7: Pdf related to above Problem.

We should have,

∫ ∞

−∞
fX(x)dx =

∫ 1/a

−1/a
fX(x) = 1

This results in a = 1. We also have:

E(X) = 0

and,

σX =
√
E(X2) =

√
1/6

In parts 2 and 3, we want to compute the average value of a function of a random variable. Given a
random variable X, the general formula for the average value of the function H(X) is,

E[H(X)] =

∫ ∞

−∞
H(X)fX(x)dx

For the case of full wave rectifier, the function is equal to, H(X) = b|X|. This results in,

E(Y ) = E(b|X|) = b[

∫ 0

−1
(−x)fX(x)dx+

∫ 1

0
xfX(x)dx] = 2b

∫ 1

0
x(1− x)dx =

b

3
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and, similarly,

E(Y 2) = 2b2
∫ 1

0
x2(1− x)dx =

b2

6

This results in σY =
√
[E(Y 2)]− [E(Y )]2 =

√
b2/18.

For the case of half wave rectifier, we note that the output is in part continuous and in part discrete
(note that all the negative value of X are mapped to zero). This means that the output of the
half-rectifier is with probability 1/2 equal to zero, while for values greater than zero, it obeys the pdf
of X. This results in,

E(Y ) = (0× 1/2) +

∫ 1

0
bx(1− x)dx =

b

6

and

E(Y 2) = (02 × 1/2) +

∫ 1

0
b2x2(1− x)dx =

b2

12

This results in σY =
√
[E(Y 2)]− [E(Y )]2 =

√
b2/18.

5. The random variable X of the life length of certain kind of battery (in hundreds of hours) is equal
to:

f(x) =

{
1
2e

−x/2 x > 0
0 otherwise

(i) Find the probability that the life of a given battery is less than 200 or greater than 400 hours.
(ii) Find the probability that a battery of this type lasts for 300 hours if we know that it has already
been in use for 200 hours.

Solution: (i) Let A denote the event that X is less than 2 and B the event that X is greater than
4. Then, because A and B are mutually exclusive,

P (A ∪B) = P (A) + P (B)

=

∫ 2

0

1

2
e−x/2 dx+

∫ ∞

4

1

2
e−x/2 dx

= (1− e−1) + e−2

= 1− 0.368 + 0.135

= 0.767

(ii) We are interested in P (X > 3|X > 2) and, by the definition of conditional probability,

P (X > 3|X > 2) =
P (X > 3)

P (X > 2)

because the intersection of the events (X > 3) and (X > 2) is the event (X > 3). Now

P (X > 3)

P (X > 2)
=

∫ ∞

3

1

2
e−x/2 dx∫ ∞

2

1

2
e−x/2 dx

=
e−3/2

e−1
= e−1/2 = 0.606

6. The failure of a circuit board interrupts work by a computer system until a new board is delivered.
Delivery time X is uniformly distributed over the interval 1 to 5 days. The cost C of this failure and
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interruption consists of a fixed cost c0 for the new part and a cost that increases proportional to X2,
i.e,

C = c0 + c1X
2

(a) Find the probability that the delivery time takes 2 or more days.
(b) Find the expected cost of a single failure, in terms of c0 and c1.

Solution: (a) The delivery time X is distributed uniformly from 1 to 5 days, which gives

f(x) =


1

4
1 ≤ x ≤ 5

0 elsewhere

Thus,

P (X ≥ 2) =

∫ 5

2

(
1

4

)
dx

=
1

4
(5− 2) =

3

4

(b) We know that
E(C) = c0 + c1E(X2)

so it remains to find E(X2). This could be found directly from the definition or by using the variance
and the fact that

E(X2) = V (X) + µ2

Using the latter approach,

E(X2) =
(b− a)2

12
+

(
a+ b

2

)2

=
(5− 1)2

12
+

(
1 + 5

2

)2

=
31

3

Thus,

E(C) = c0 + c1

(
31

3

)
7. Let X denote the life time (in hundreds of hours) of a certain type of electronic component. These

components frequently fail immediately upon insertion into the system. It has been observed that
the probability of immediate failure is 1/4. If a component does not fail immediately, the life-length
distribution has the exponential density:

f(x) =

{
e−x x > 0
0 elsewhere

Find the distribution function for X and evaluate P (X > 10).

Solution: There is only one discrete point, X = 0, and this point has probability 1/4. It follows
that X is a mixture of two random variables, X1 and X2, where X1 has a probability of one at the
point zero and X2 has the given exponential density. That is,

F1(x) =

{
0 if x < 0
1 if x ≥ 0
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and

F2(x) =

∫ x

0
e−y dy

= 1− e−x x > 0

Now,

F (x) =

(
1

4

)
F1(x) +

(
3

4

)
F2(x)

Hence,

P (X > 10) = 1− P (X ≤ 10)

= 1− F (10)

= 1−
[
1

4
+

(
3

4

)
(1− e−10)

]
=

(
3

4

)
[1− (1− e−10)] =

(
3

4

)
e−10

8. Suppose X has density function f(x) for −1 ≤ x ≤ 1 and 0 otherwise. Find the density function of
(a) Y = |X|, (b) Z = X2.

Solution: (a) For y > 0, P (Y ≤ y) = P (−y ≤ X ≤ y) = F (y)− F (−y). Differentiating the cdf, we
conclude that the pdf of Y is f(y) + f(−y) for 0 < y < 1 and 0 elsewhere.

You may also try to use the following relationship:

fY (y) =
∑
xi

fX(xi)∣∣∣∣dydx
∣∣∣∣

(b) For z > 0, P (Z ≤ z) = P (−
√
z ≤ X ≤

√
z) = F (

√
z)− F (−

√
z). Hence the pdf of Z is

[f(
√
z) + f(−

√
z)] · (1

2
z−1/2), for 0 < z < 1

and 0 otherwise.

9. Suppose X is uniform on (0,1). Find the density function of Y = Xn.

Solution: Suppose X has density fX and P (a < X < b) = 1. Let Y = r(X). Suppose r : (a, b) →
(α, β) is continuous and strictly increasing, and let s : (α, β) → (a, b) be the inverse of r. Then, we
know that Y has density

fY (y) = fX [s(y)]s′(y) for y ∈ (α, β)

Therefore, since X has density function fX(x) = 1 for 0 < x < 1, and r(x) = xn has inverse

s(x) = x1/n, the theorem gives the density function fX(y
1
n ) · 1

n
y

1
n
−1 =

1

n
y

1
n
−1 for 0 < y < 1.

10. Suppose X is uniform on (0, π/2) and Y = sinX. Find the density function of Y . The answer is
called the arcsine law because the distribution function contains the arcsine function.

Solution: The density function of X is fX(x) = 2/π for 0 < x < π/2 and r(x) = sinx has the
inverse s(x) = sin−1 x. Using the same result as in the previous problem, we obtain the density

function fX [s(y)] · s′(y) = 2

π
· 1√

1− y2
for 0 < y < 1.
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11. Suppose X has density function 3x−4 for x ≥ 1. (a) Find a function g so that g(X) is uniform on
(0,1). (b) Find a function h so that if U is uniform on (0,1), h(U) has density function 3x−4 for
x ≥ 1.

Solution: Suppose X has a continuous distribution. Then Y = FX(X) is uniform on (0,1).

(a) P (X ≤ x) =

∫ x

1
3y−4 dy = 1 − x−3 for x > 1 and 0 elsewhere. The above statement tells that

Y = g(X) = 1−X−3 is uniform on (0,1).

Suppose U has a uniform distribution on (0,1). Then Y = F−1(U) has distribution function F .

(b) F (x) has inverse F−1(x) = (1− x)−
1
3 . The above statement says that F−1(U) = (1− U)−

1
3 has

the given density function.

12. A Gaussian distributed random variable X with zero mean and the unit variance is applied to a
“full-wave” rectifier whose output-input gain characteristic is y = |x|/a, a > 0. Determine the pdf
of the output random variable Y.

The mapping is one-to-one for x < 0 and one-to-one for x > 0. In both cases, y > 0. Using the
equation

fY (y) =
fX(x)

|dy/dx|
we have for x > 0

fY (y) = a

[
1√
2π

e−x2/2
]
x=ay

=
a√
2π

e−a2y2/2 y > 0

and for x < 0

fY (y) = a

[
1√
2π

e−x2/2
]
x=−ay

=
a√
2π

e−a2y2/2 y > 0

Adding these two results, we obtain,

fY (y) = a

√
2

π
e−a2y2/2u(y), where u(y) is the unit step function

We could equivalently use the following relationship:

fY (y) =
∑
k

fX(xk)

|dg/dxk|

∣∣∣∣∣
xk=g−1(y)

where g(x) = |x|/a.

13. The random variable X of the previous problem is applied to the half-wave rectifier whose output-
input characteristic is y = (x/a)u(x). Determine the pdf of the output.

Solution: For x > 0, it can easily be shown that

fy(y) =
a√
2π

e−a2y2/2, y > 0

For x < 0, however all points of the input are mapped into zero in the output. To conserve probability
we must add a contribution of

∫ 0
−∞ fX(x)dx = 1/2 at the point y = 0 so that

fy(y) =
a√
2π

e−a2y2/2u(y) +

(
1

2

)
δ(y)
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14. Suppose X has density x−2 for x ≥ 1 and Y = X−2. Find the pdf of Y .

Solution: Noting P (Y ≤ x) = P (X ≥ x−
1
2 ) = 1 − F (x−

1
2 ) for x ≤ 1 leads to the density function

of Y by differentiating:

d

dx
P (Y ≤ x) = F ′(x−

1
2 )(

1

2
x−3/2) =

1

2
x−1/2, for 0 < x ≤ 1

15. The actual weight of a bag of sugar is assumed to be a normal random variable with mean 202 grams
and standard deviation of 3 grams. If a bag weighs less than 199 grams or more than 205 grams it
is rejected.

(i) What is the probability that a bag will be rejected?
(ii) Given that a bag was rejected, what is the probability it weighs less than 195 grams?
(iii) If the standard deviation of the filling process is changed to σ, but the mean remains at 202

grams, what is the largest value that σ can have so that the probability a bag is rejected is less
than .01?

Give numerical answers.

Solution: (i) P (bag rejected) = 1−P (199 < X < 205) = 1−P (
199− 202

3
<

X − 202

3
<

205− 202

3
)

= 1− (Φ(1)− Φ(−1)) = 0.84134− 0.15866 = 0.31732.

(ii) Let A =bag rejected, B = {X < 195}, then P (B|A) = P (AB)/P (A)

= P (X < 195)/P (A) = Φ(
195− 202

3
)/0.31732 = Φ(−7/3)/0.31732 = 0.00982/0.31732. = 0.0309.

(iii) P (bag rejected) = 1 − [Φ(3/σ) − Φ(−3/σ)] = 2(1 − Φ(3/σ) = 0.01 or Φ(3/σ) = 0.995 and
3/σ = 2.575 and σ = 1.165.

16. The error in a linear measurement, is assumed to be a normal random variable with mean 0 and
variance σ2, in mm2.

(i) What is the largest value of σ allowable if P (|X| < 2) is to be at least 0.90?
(ii) If σ = 2 evaluate P (X > 4 | |X| < 5).

Solution: (i) P (|X| < 2) = Φ(2/σ)−Φ(−2/σ) = 2Φ(2/σ)−1 = 0.9 or Φ(2/σ) = 0.95 and 2/σ = 1.65
and σ = 1.212.

(ii) P (X > 4 ||X| < 5) = P (X > 4 and |X| < 5)/P (|X| < 5) =

Φ(5/2)− Φ(4/2)

Φ(5/2)− Φ(−5/2)
= 0.0167.

17. The projection of a point chosen at random on the circumference of a circle of radius a onto a fixed
diameter, has the cdf:

FX(x) =


1 x ≥ a
1

2
+

1

π
arcsin

x

a
−a ≤ x ≤ a

0 otherwise
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(i) Determine the probability that X will be on the interval (−a/2, a/2)

(ii) Find the probability density function of X

(iii) Find the mode and the median of the distribution.

Solution: (i)

P (−a

2
< X <

a

2
) = FX(

a

2
)− FX(−a

2
) =

2

π
arcsin(

1

2
) =

1

3
.

The density function is given by

fX(x) =
d

dx
FX(x) =

d

dx
(
1

2
+

1

π
arcsin(

x

a
)) =

1

π(a2 − x2)1/2
, − a ≤ x ≤ a

and zero otherwise. The mode of the distribution is the point at which the pdf achieves its maximum
value. This distribution has no mode. The median is the point at which FX(x) = 1/2, which is
x = 0.

18. The signal strength in volts at the input to an antenna, is a random variable with cdf

F (x) = 1− e−x2/a , x ≥ 0, a > 0.

(i) Find the probability density function, mean and variance of X.

(ii) If ten independent samples of the signal strength are taken, what is the probability that exactly
7 of them will be greater than 2 volts?

Solution: (i) The probability density function is:

fX(x) =
d

dx
FX(x) =

2x

a
e−x2/a , x ≥ 0

E(X) =
2

a

∫ ∞

0
x2e−x2/adx =

√
aπ

2

E(X2) =
2

a

∫ ∞

0
x3e−x2/adx = a

V ar(X) = a(1− π

4
)

(ii) The probability that one sample is greater than 2 is p = exp(−4/a) = 1− FX(2) and so:

P (7 out of 10 greater than 2) =

(
10

7

)
p7(1− p)3 .

19. The random variable X is normal with mean 81 and variance 16 while Y is normal with mean 85
and variance 4. Which random variable is more likely to be less than 88?

Solution:

P (X ≤ 88) = P (
X − 81

4
≤ 7

4
) = Φ(

7

4
)

P (Y ≤ 88) = P (
Y − 85

2
≤ 3

2
) = Φ(

3

2
)

and hence X is more likely to be less than 88.
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20. The lifetime of an electronic component is a random variable which has an exponential pdf. If 50%
of the components fail before 2,000 hours, what is the average lifetime of the component?

Solution: The pdf is of the form α exp(−αx) and P (X ≤ 2000) = 1− exp(−2, 000α) = 0.5
Thus α = − ln(0.5)/2, 000 and the average lifetime of the component is 1/α = 2, 000/ ln(2).

21. The probability density function of a random variable X is

fX(x) = ax2e−kx , k > 0 , 0 ≤ x < ∞ .

Find:

(i) the coefficient a in terms of k.

(ii) the cdf of X.

(iii) The probability that 0 ≤ X ≤ 1/k.

Solution: (i) From the formula for the gamma function it is easily shown that∫ ∞

0
ax2e−kxdx =

2a

k3
.

and a = k3/2.

(ii) The cdf is

FX(x) =

∫ x

0

k3

2
y2e−kydy = 1− k2x2 + 2kx+ 2

2
e−kx , x ≥ 0 .

(iii)

P (0 ≤ X ≤ 1

k
) = FX(

1

k
) = 1− 5

2
e−1 .



ECE316 Notes-Winter 2017: A. K. Khandani 91

6 Jointly Distributed Random Variables

6.1 Joint Distribution Functions

So far, we have only concerned ourselves with probability distributions for single random variables. In this
chapter, we deal with probability statements concerning two or more random variables. In order to deal
with such probabilities, we define, for any two random variables X and Y , the joint cumulative probability
distribution function of X and Y by

F (a, b) = P{X ≤ a, Y ≤ b} −∞ < a, b < ∞

The distribution of X can be obtained from the joint distribution of X and Y as follows:

FX(a) = P{X ≤ a}
= P{X ≤ a, Y < ∞}
= F (a,∞)

and similarly
FY (b) = F (∞, b)

The distribution functions FX and FY are sometimes referred to as the marginal distributions of X and
Y .
In the case that both X and Y are both discrete random variables, it is convenient to define the joint
probability mass function of X and Y by

p(x, y) = P{X = x, Y = y}

The probability mass function of X can be obtained from p(x, y) by

pX(x) = P{X = x} =
∑
y

p(x, y)

and similarly
pY (y) = P{Y = y} =

∑
x

p(x, y)

Jointly Continuous Random Variables We say that X and Y are jointly continuous if there exists
a function f(x, y) defined for all real x and y, having the property that for every set C of pairs of real
numbers (that is, C is a set in the two dimensional plane)

P{(X,Y ) ∈ C} =

∫∫
(x,y)∈C

f(x, y) dx dy

The function f(x, y) is called the joint probability density function of X and Y .
If A and B are any sets of real numbers, then by defining C = {(x, y) : x ∈ A, y ∈ B}, we see that

P{X ∈ A, Y ∈ B} =

∫
B

∫
A
f(x, y) dx dy

Because

F (a, b) = P{X ∈ (−∞, a], Y ∈ (−∞, b]} =

∫ b

−∞

∫ a

−∞
f(x, y) dx dy

after differentiating

f(a, b) =
∂2

∂a ∂b
F (a, b)
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wherever the partial derivations are defined.
Another interpretation of the joint density function is as follows:

P{a < X < a+ da, b < Y < b+ db} =

∫ b+db

b

∫ a+da

a
f(x, y)dxdy ≈ f(a, b)dadb

when da and db are small and f(x, y) is continuous at a, b. Hence f(a, b) is a measure of how likely it is
that the random vector (X,Y ) will be near (a, b).
Similar to discrete case we have

fX(x) =

∫ ∞

−∞
f(x, y)dy

and

fY (y) =

∫ ∞

−∞
f(x, y)dx

We can also define joint probability distributions for n random variables in exactly the same manner as
we did for n = 2. The joint cumulative probability distribution function F (a1, a2, . . . , an) of the n random
variables X1, X2, . . . , Xn is defined by

F (a1, a2, . . . , an) = P{X1 ≤ a1, X2 ≤ a2, . . . , Xn ≤ an}

Further, the n random variables are said to be jointly continuous if there exists a function f(x1, x2, . . . , xn),
called the joint probability density function, such that for any set C in n-space

P{(X1, X2, . . . , Xn) ∈ C} =

∫∫
· · ·
∫
(x1,x2,...,xn)∈C

f(x1, . . . , xn) dx1 dx2 dxn

6.2 Independent Random Variables

The random variables X and Y are said to be independent if for any two sets of real numbers A and B,

P{X ∈ A, Y ∈ B} = P{X ∈ A}P{Y ∈ B}
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In terms of the joint distribution function F of X and Y , we have that X and Y are independent if

F (a, b) = FX(a)FY (b) for all a, b

When X and Y are discrete random variables, the condition of independence is equivalent to

p(x, y) = pX(x)pY (y) for all x, y

and for continuous case,
f(x, y) = fX(x)fY (y) for all x, y

Proposition: The continuous (discrete) random variables X and Y are independent if and only if their
joint probability density (mass) function can be expressed as

fX,Y (x, y) = fX(x)fY (y) −∞ < x < ∞,−∞ < y < ∞

Remark: For set of random variables X1, . . . , Xn we can show that theses random variables are indepen-
dent by showing that
X2 is independent of X1

X3 is independent of X1, X2

X4 is independent of X1, X2, X3

. . .

. . .
Xn is independent of X1, . . . , Xn−1

6.3 Sums of Independent Random Variables

Suppose that X and Y are independent, continuous random variables having probability distribution
functions fx and fy. The cumulative distribution function of X + Y is obtained as follows:

FX+Y (a) = P{X + Y ≤ a}
=

∫∫
x+y≤a

fX(x)fY (y) dx dy

=

∫ ∞

−∞

∫ a−y

−∞
fX(x)fY (y) dx dy

=

∫ ∞

−∞
FX(a− y)fY (y) dy
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By differentiating, we obtain that the probability density function fX+Y of X + Y is given by

fX+Y (a) =
d

da

∫ ∞

−∞
FX(a− y)fY (y) dx dy

=

∫ ∞

−∞
fX(a− y)fY (y) dy

Proposition, Sum of Gamma Random Variables: If X and Y are independent gamma random vari-
ables with respective parameters (s, λ) and (t, λ), then X+Y is a gamma random variable with parameters
(s+ t, λ).
Proof:

fX+Y (a) =
1

Γ(s)Γ(t)

∫ a

0
λe−λ(a−y)[λ(a− y)]s−1λe−λy(λy)t−1dy

= Ke−λa
∫ a

o
(a− y)s−1yt−1dy

= Ke−λaas+t−1
∫ 1

o
(1− x)s−1xt−1dx by letting x =

y

a
= Ce−λaas+t−1

where C is a constant that does not depend on a. But as the above is a density function and thus must
integrate to 1, the value of C is determined, and we have

fX+Y (a) =
λe−λa(λa)s+t−1

Γ(s+ t)

Sum of Square of Standard Normal Random Variables: If Z1, Z2, . . . , Zn are independent stan-

dard normal random variables, then Y ≡
n∑

i=1

Z2
i is said to have the chi-squared (sometimes seen as χ2)

distribution with n degrees of freedom. When n = 1, Y = Z2
1 , we can see that its probability density

function is given by

fZ2(y) =
1

2
√
y
[fZ(

√
y) + fZ(−

√
y)]

=
1

2
√
y

2√
2π

e−y/2

=

1

2
e−y/2(y/2)1/2−1

√
π

Noting that Γ(
1

2
) =

√
π, this is the gamma distribution with parameters (

1

2
,
1

2
). From the above proposition

we obtain that the χ2 distribution with n degree of freedom is just the gamma distribution with parameters

(
n

2
,
1

2
) and hence has the probability density function as

fχ2(y) =

1

2
e−y/2(

y

2
)n/2−1

Γ(
n

2
)

y > 0

=
e−y/2yn/2−1

2n/2Γ(
n

2
)

y > 0

When n is an even integer, Γ(
n

2
) = [(n/2)− 1]!, and when n is odd, Γ(

n

2
) can be obtained from iterating

the relationship Γ(t) = (t− 1)Γ(t− 1) and then using Γ(
1

2
) =

√
π.
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Proposition, Sum of Normal Random Variables: If Xi, i = 1, . . . , n are independent random vari-

ables that are normally distributed with respective parameters µi, σ
2
i , i = 1, . . . , n, then

n∑
i=1

Xi is normally

distributed with parameters
n∑

i=1

µi and
n∑

i=1

σ2
i .

6.4 Conditional Distributions: Discrete Case

For any two events E and F , the conditional probability of E given F is defined, provided that P (F ) > 0,
by

P (E|F ) =
P (EF )

P (F )

Hence, If X and Y are discrete random variables, it is natural to define the conditional probability mass
function of X given by Y = y, by

pX|Y (x|y) = P{X = x|Y = y}

=
P{X = x, Y = y}

P{Y = y}
=

p(x, y)

pY (y)

for all values of y such that pY (y) > 0. Similarly, the conditional probability distribution function of X
given that Y = y is defined, for all y such that pY (y) > 0, by

FX|Y (x|y) = P{X ≤ x|Y = y}
=

∑
a≤x

pX|Y (a|y)

If X and Y are independent, then
pX|Y (x|y) = P{X = x}

6.5 Conditional Distributions: Continuous Case

If X and Y have a joint density function f(x, y), then the conditional probability density function of X,
given that Y = y, is defined for all values of y such that fY (y) > 0, by

fX|Y (x|y) =
f(x, y)

fY (y)
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6.6 Joint Probability Distribution Functions of Random Variables

Let X1 and X2 be jointly continuous random variables with joint probability density function fX1,X2 . It
is sometimes necessary to obtain the joint distribution of the random variables Y1 and Y2, which arise as
functions of X1 and X2. Specifically, suppose that Y1 = g1(X1, X2) and Y2 = g2(X1, X2). Assume that
functions g1 and g2, satisfy the following conditions:

1. The equations y1 = g1(x1, x2) and y2 = g2(x1, x2) can be uniquely solved for x1 and x2 in terms of
y1 and y2 with solutions given by, x1 = h1(y1, y2) and x2 = h2(y1, y2).

2. The functions g1 and g2 have the continuous partial derivatives at all points (x1, x2) that are such
that the following 2× 2 determinant

J(x1, x2) =

∣∣∣∣∣∣∣∣
∂g1
∂x1

∂g1
∂x2

∂g2
∂x1

∂g2
∂x2

∣∣∣∣∣∣∣∣ =
∂g1
∂x1

∂g2
∂x2

− ∂g1
∂x2

∂g2
∂x1

̸= 0

at all points (x1, x2).

Under these two conditions it can be shown that the random variables Y1 and Y2 are jointly continuous
with joint density function given by

fY1,Y2(y1, y2) = fX1,X2(x1, x2)|J(x1, x2)|−1

where x1 = h1(y1, y2) and x2 = h2(y1, y2).
When the joint density function of n random variables X1, X2, . . . , Xn is given and we want to compute
the joint density function of Y1, Y2, . . . , Yn, where Y1 = g1(X1, . . . , Xn), Y2 = g2(X1, . . . , Xn), . . . , Yn =
gn(X1, . . . , Xn) the approach is the same. Namely, we assume that the functions gi have continuous partial
derivatives and that the Jacobian determinant J(x1, . . . , xn) ̸= 0 at all points (x1, . . . , xn), where

J(x1, . . . , xn) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∂g1
∂x1

∂g1
∂x2

· · · ∂g1
∂xn

∂g2
∂x1

∂g2
∂x2

· · · ∂g2
∂xn

...
...

...
∂gn
∂x1

∂gn
∂x2

· · · ∂gn
∂xn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
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6.7 Some Solved Problems

1. Let R1 and R2 be independent, each with density f(x) = e−x, x ≥ 0; f(x) = 0, x < 0. Let
R3=max(R1,R2). Compute E(R3).

Solution:

E(R3) = E[g(R1, R2)] =

∫ ∞

−∞

∫ ∞

−∞
g(x, y)f12(x, y) dx dy

=

∫ ∞

0

∫ ∞

0
max(x, y)e−xe−y dx dy

Now max (x, y) = x if x ≥ y; max (x, y) = y if x ≤ y. Thus

E(R3) =

∫ ∫
x≥y

xe−xe−y dx dy +

∫ ∫
y≥x

ye−xe−y dx dy

=

∫ ∞

x=0
xe−x

∫ x

y=0
e−y dy dx+

∫ ∞

y=0
ye−y

∫ y

x=0
e−x dx dy

The two integrals are equal, since one may be obtained from the other by interchanging x and y.
Thus

E(R3) = 2

∫ ∞

0
xe−x

∫ x

0
e−y dy dx = 2

∫ ∞

0
xe−x(1− e−x) dx

= 2

∫ ∞

0
xe−x dx− 2

∫ ∞

0

z

2
e−z dz

2
=

3

2
Γ(2) =

3

2

2. We arrive at a bus stop at time t = 0. Two buses A and B are in operation. The arrival time R1

of bus A is uniformly distributed between 0 and tA minutes, and the arrival time R2 of bus B is
uniformly distributed between 0 and tB minutes, with tA ≤ tB. The arrival times are independent.
Find the probability that bus A will arrive first.

Solution: We are looking for the probability that R1 < R2. Since R1 and R2 are independent, the
conditional density of R2 given R1 is

f(x, y)

f1(x)
= f2(y) =

1

tB
, 0 ≤ y ≤ tB

If bus A arrives at x, 0 ≤ x ≤ tA, it will be first provided that bus B arrives between x and tB. This
happens with probability (tB − x)/tB. Thus

P{R1 < R2|R1 = x} = 1− x

tB
, 0 ≤ x ≤ tA

Hence,

P{R1 < R2} =

∫ ∞

−∞
P{R1 < R2|R1 = x}f1(x) dx

=

∫ tA

0

(
1− x

tB

)
1

tA
dx = 1− tA

2tB

Alternatively, we may simply use the joint density:

P{R1 < R2} =

∫ ∫
x<y

f(x, y) dx dy

= the shaded area in figure below, divided by total area tAtB

= 1− t2A/2

tAtB
= 1− tA

2tB



ECE316 Notes-Winter 2017: A. K. Khandani 98

as before.

tA

tB

x = y

x

y

3. Suppose that X and Y have joint density f(x, y) = (3x2 + 4xy)/2 when 0 < x, y < 1. Find the
marginal density of X and the conditional density of Y given X = x.

Solution:

fX(x) =

∫ 1

0
(3x2 + 4xy)/2 dy =

3

2
x2 + x, for 0 < x < 1

and

fY (y|X = x) =
3x2 + 4xy

2
/(
3

2
x2 + x) =

3x+ 4y

3x+ 2
, for 0 < y < 1.

4. Suppose the joint pdf for the random variables X and Y is given by

fX,Y (x, y) =

{
c, 0 ≤ x ≤ y ≤ 1
0, otherwise.

Find the following: (a) The constant c, (b) The marginal pdfs fX(x) and fY (y), and (c) The proba-
bility that X + Y < 1 .

Solution: (a) We know that the area under the pdf should be equal to one, and in this case,∫ ∞

−∞

∫ ∞

−∞
fX,Y (x, y) dx dy =

∫ 1

0

∫ 1

x
c dy dx = 1

Thus
c/2 = 1 =⇒ c = 2

(b)

fX(x) =

∫ ∞

−∞
fX,Y (x, y) dy
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so,

fX(x) =

∫ 1

y=x
2 dy =

{
2(1− x), 0 ≤ x ≤ 1
0, otherwise

Similarly,

fY (y) =

∫ ∞

−∞
fX,Y (x, y) dx =

∫ y

x=0
2 dx

=

{
2y, 0 ≤ y ≤ 1
0, otherwise

(c) By noticing the following figure, it is clear that:

P (X + Y < 1) =
1

2
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10

y

x+y=1

1

x

5. Consider a joint pdf for random variables X and Y defined as

fX,Y (x, y) =

{
cxy, 0 ≤ x, y ≤ 1
0, otherwise.

Define the event A as Y > X. (i) Compute the contact c. (ii) Find the conditional pdf of X and Y ,
given A. (ii) Find the conditional pdf of Y given A.

Solution: We first must find the value for c in fX,Y (x, y). We have,∫ 1

0

∫ 1

0
cxy dx dy = 1

And so,

c

∫ 1

0
y(

x2

2

∣∣∣∣∣
1

0

) dy = c

∫ 1

0

y

2
dy = 1
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Which results in c = 4.
To find fX,Y |A(x, y|A), we first find p(A).

P (A) = P (Y > X) = 4

∫ 1

0

∫ y

0
xy dx dy =

1

2

The conditional density, given A, is

fX,Y |A(x, y|A) =

{
fX,Y (x,y)

1/2 , (x, y) ∈ A ≡ 0 ≤ x < y ≤ 1

0, otherwise.

=

{
8xy, 0 ≤ x < y ≤ 1
0, otherwise.

The marginal pdf of Y given A, is obtained by integrating fX,Y |A(x, y|A) with respect to x.

fY |A(y|A) =

∫ y

0
8xy dx = 8y

x2

2

∣∣∣∣∣
y

0

=

{
4y3, 0 ≤ y ≤ 1
0, otherwise.

6. Let X and Y be independent and uniformly distributed over the interval (0, a). The density functions
are given by

fX(x) = 1/a (0 ≤ x ≤ a)

fY (y) = 1/a (0 ≤ y ≤ a)

and zero otherwise. Find the density function of Z = X + Y .

Solution: We know that the PDF of Z is given by

fZ(z) =

∫ ∞

−∞
fX(x)fY (z − x) dx

Hence, the integrand is 1/a2 if 0 ≤ x ≤ a, 0 ≤ z − x ≤ a and zero otherwise. Two cases depending
on the value of z:

(a) For 0 ≤ z ≤ a, we find,

fZ(z) =

∫ z

0
(1/a)2 dx = z/a2

(b) For a ≤ z ≤ 2a, we find,

fZ(z) =

∫ a

z−a
(1/a)2 dx = (2a− z)/a2

7. At a crossing there is a traffic light showing alternately green and red light for a seconds. A car
driver who arrives at random has to wait for a time period Z. Find the distribution of Z.
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Solution: If the driver arrives during a green period, his waiting time is zero. Since the green and
the red lights have the same durations, we have P (Z = 0) = 1/2. If the driver arrives during the
first a− z seconds of a red period, his waiting time is greater than z.
Hence for 0 < z < a we have

P (Z > z) =
a− z

2a
and P (Z ≤ z) = 1− a− z

2a
=

1

2
+

z

2a

Thus, the cdf function is:

FZ(z) =


0 if z < 0
1/2 if z = 0
1
2 + z

2a if 0 < z < a
1 if z ≥ a

8. Let (X,Y, Z) be a random point uniformly selected in the unit sphere. That is, their joint density is
3/4π when x2 + y2 + z2 ≤ 1, and 0 otherwise. Find the marginal densities of (i) (X,Y ) and (ii) Z.

Solution: To find the fXY (x, y), we integrate fXY Z with respect to z in the range
[−
√
1− x2 − y2,

√
1− x2 − y2]. This results in,

fX,Y (x, y) =
3

4π
· 2
√
1− x2 − y2, for x2 + y2 ≤ 1.

To compute fZ(z), from the previous result we know that,

fX,Z(x, z) =
3

4π
· 2
√
1− x2 − z2, for x2 + z2 ≤ 1.

We integrate fX,Z(x, z) with respect to x in the range, [−
√
1− z2,

√
1− z2]. One way to do this is

to apply the change of variable
x√

1− z2
= cosϕ

This results in,

fZ(z) =
3

4
· (1− z2).

9. SupposeX1, . . . , Xn are independent and all have the cdf FX(x). Find the cdf of Y = max{X1, . . . , XN},
and Z = min{X1, . . . , XN}.

Solution: (a) FY (y) = P (X1 ≤ y, · · · , Xn ≤ y) = FX(y)n.
(b) P (Z > z) = P (X1 > z, · · · , Xn > z) = (1− FX(z))n, so FZ(z) = 1− (1− FX(z))n.

10. Suppose X1, . . . , X5 are independent and all have the same distribution which is continuous. Show
that P (X3 < X5 < X1 < X4 < X2) = 1/5!.

Solution: Let X1, . . . , X5 be independent with distribution f . We use the fact that f is continuous
to conclude that with probability one all the X’s are distinct. This means that for a given set of
X1, . . . , X5 values, we can have 5! different permutation to rearrange the X values. Noting the inde-
pendence of the X’s, we conclude that these 5! different permutations all have the same probability.
As these 5! different permutations are disjoint and cover all the possibilities for the ordering of X’s,
we conclude that each happen with probability 1/5!.
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11. Suppose X and Y are independent, X is uniform on (0, 1) and Y has the cdf F (y). Show that
Z = X + Y has the density function F (z)− F (z − 1).

Solution: Using the result of problem 4 with fX(x) = 1, we obtain,

fX+Y (z) =

∫ 1

0
fY (z − x) dx = F (z)− F (z − 1)

12. Fill in the rest of the joint distribution given in the following table knowing that (i) P (Y = 2|X =
0) = 1/4, and (ii) X and Y are independent.

Y X = 0 3 6
1 ? ? ?
2 .1 .05 ?

(i) P (Y = 2|X = 0) = 1/4 and P (X = 0, Y = 2) = 0.1 implies P (X = 0) = 0.4 and P (X = 0, Y =
1) = 0.3. Using the fact that X and Y are independent, we conclude now from P (X = 0, Y = 2) =
P (X = 0)×P (Y = 2) = 0.1 that P (Y = 2) = 0.25, and P (X = 3, Y = 2) = P (X = 3)×P (Y = 2) =
0.05 gives that P (X = 3) = 0.2 and hence, P (X = 6) = 1− 0.4− 0.2. Thus the entire distribution is
given by,

Y X = 0 3 6
1 .3 .15 .3
2 .1 .05 .1

13. Suppose X and Y have joint density f(x, y). Are X and Y independent if

(a) f(x, y) = xe−x(1+y) for x, y ≥ 0

(b) f(x, y) = 6xy2 when x, y ≥ 0 and x+ y ≤ 1

(c) f(x, y) = 2xy + x when 0 < x < 1 and 0 < y < 1

(d) f(x, y) = (x+ y)2 − (x− y)2 when 0 < x < 1 and 0 < y < 1

In each case, f(x, y) = 0 otherwise.

Solution: (a) No. Since fX(x) =
∫∞
0 xe−x(1+y) dy = e−x for x > 0.

fY (y) =

∫ ∞

0
xe−x(1+y) dx

= − xe−x(1+y)

1 + y

∣∣∣∣∣
∞

0

+

∫ ∞

0

e−x(1+y)

1 + y
dx =

1

(1 + y)2

for y > 0, and f(x, y) ̸= fX(x)fY (y).

We could simply reach this conclusion by noticing that fX,Y (x, y) cannot be factored as the product
of two functions, one only function of x and the other one only function of y.

(b) No. Since {(x, y) : f(x, y) > 0} is not a rectangle. Note that fX,Y (x, y) can be factored as the
product of two functions, one only function of x and the other one only function of y. However, this
is not sufficient condition for independence.

Theorem: If f(x, y) can be written as g(x)h(y) then there is a constant c so that fX(x) = cg(x) and
fY (y) = h(y)/c. It follows that f(x, y) = fX(x)fY (y) and hence X and Y are independent. Note
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that this requires the range of (x, y) to be a rectangle with one side corresponding to the range of x
and the other side corresponding to the range of y.

(c) Yes by the above theorem since f(x, y) = x(2y + 1).
(d) Yes by the above theorem since f(x, y) = 2x · 2y.

14. Suppose X1, . . . , Xn are independent and have distribution function F (x). Find the joint density
function of Y = max{X1, . . . , Xn} and Z = min{X1, . . . , Xn}. Find the joint density of Y and Z.

Solution: We have,

P (Y ≤ y, Z ≥ z) = P (z ≤ Xi ≤ y for all i ≤ n) = (

∫ y

z
f(x) dx)n = [F (y)− F (z)]n.

and,
P (Y ≤ y, Z ≥ z) + P (Y ≤ y, Z ≤ z) = P (Y ≤ y)

This is used to compute the joint distribution function F (y, z) as follows:

F (y, z) = P (Y ≤ y, Z ≤ z) = P (Y ≤ y)− P (Y ≤ y, Z ≥ z) = F (y)n − [F (y)− F (z)]n

The corresponding joint density function is equal to,

f(y, z) =
∂2F

∂y∂z
= n(n− 1)f(y)f(z)

(∫ y

z
f(x) dx

)n−2

15. Suppose X1, . . . , Xn are independent and uniform on (0,1). Let X(k) be the kth smallest of the Xj .
Show that the density of X(k) is given by

n

(
n− 1

k − 1

)
xk−1(1− x)n−k

Solution: This formula is easy to understand: There are n values of index j that we can pick such
that the corresponding Xj is the kth smallest of the X’s. The rest of the formula then gives the
probability that exactly k − 1 of the remaining n− 1 variables are smaller than x.

Suppose X1, . . . , Xn are independent and have density function f . Let X(1) be the smallest of the
Xj , X

(2) be the second smallest, and so on until X(n) is the largest. It can be shown that their joint
density is given by

f(x1, . . . , xn) =

{
n!f(x1) · · · f(xn) if x1 < x2 · · · < xn (∗)
0 otherwise

Hence, the density function of X(k) is obtained by integrating the above joint density with respect
to the other variables:

n!

∫ xk

0

∫ xk

x1

· · ·
∫ xk

xk−2

∫ 1

xk

· · ·
∫ 1

xn−1

dxn · · · dxk+1 dxk−1 · · · dx2 dx1

= n! 1
(k−1)!x

k−1
k

1
(n−k)!(1− xk)

n−k

= n

(
n− 1

k − 1

)
xk−1
k (1− xk)

n−k
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To generalize the above result we show that if X1, . . . , Xn are independent and have density f then
the density of X(k) is given by

nf(x)

(
n− 1

k − 1

)
F (x)k−1(1− F (x))n−k

The density function of X(k) is obtained by integrating the (*) equation:

n! ·
∫ xk

−∞
· · ·
∫ xk

xk−2

∫ ∞

xk

· · ·
∫ ∞

xn−1

Πn
i=1f(xi) dxn · · · dxk+1 dxk−1 · · · dx1

To evaluate this we prove by induction that∫ b

a
· · ·
∫ b

xk+i−1

Πi
j=1f(xk+j) dxk+i · · · dxk+1 =

1

i!
(F (b)− F (a))i (∗∗)

This is clear if i = 1. If the formula is true for i then the integral for i+ 1 is

∫ b
a f(xk+1)

1

i!
(F (b)− F (xk+1))

i dxk+1

= − (F (b)− F (xk+1))
i+1

(i+ 1)!

∣∣∣∣∣
b

a

= 1
(i+1)!(F (b)− F (a))i+1

and we have proved (**). Using (**) with a = −∞, b = xk, i = k−1 and then a = xk, b = ∞, i = n−k
we have

g(xk) = n!f(xk)
1

(k − 1)!
F (xk)

k−1 · 1

(n− k)!
(1− F (xk))

n−k

= nf(xk)

(
n− 1

k − 1

)
F (xk)

k−1(1− F (xk))
n−k

16. Suppose we take a die with 3 on three sides, 2 on two sides, and 1 on one side, roll it n times, and let
Xi be the number of times side i appeared. Find the conditional distribution P (X2 = k|X3 = m).

Solution:

P (X3 = m) =

(
n

m

)(
3

6

)m (
1− 3

6

)n−m

P (X2 = k,X3 = m) =
n!

(n− k −m)!k!m!
(3/6)m(2/6)k(1/6)n−m−k

P (X2 = k|X3 = m) =

(
n−m

k

)
(2/3)k(1/3)n−m−k

that is, binomial(n−m, 2/3).

17. Suppose X1, . . . , Xm are independent and have a geometric distribution with parameter p. Find
P (X1 = k|X1 + · · ·Xm = n).
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Solution: One can show that the sum of i.i.d random variables with geometric distribution has a

Pascal distribution. Using this fact we have, P (X1 + · · ·+Xm = n) =

(
n− 1

m− 1

)
pm(1− p)n−m, so:

P (X1 = k|X1 + · · ·+Xm = n) =
P (X1 = k)P (X2 + · · ·+Xm = n− k)

P (X1 + · · ·+Xm = n)

=

(
n− 1− k

m− 2

)
/

(
n− 1

m− 1

)

This is quite intuitive since among

(
n− 1

m− 1

)
choices for the firstm−1 successes there are

(
n− 1− k

m− 2

)
with the first success occurring at the kth trial.

18. Suppose X and Y have joint density f(x, y) = (1/2)e−y when y ≥ 0 and −y ≤ x ≤ y. Compute
P (X ≤ 1|Y = 3).

Solution:

fY (y) =

∫ y

−y

1

2
e−y dx = ye−y for y ≥ 0

fX(x|Y = y) = (1/2)e−y/ye−y = 1/2y for − y ≤ x ≤ y

P (X ≤ 1|Y = 3) =

∫ 1

−3
1/6 dx = 2/3

19. Jobs 1 and 2 must be completed before job 3 is begun. If the amount of time each task takes is
independent and uniform on (2,4), find the density function for the amount of time T it takes to
complete all three jobs.

Solution: Let Ti be the time required for job i, S = max{T1, T2}, and T = S+T3 be the total time.
P (S ≤ s) = (s− 2)2/4 when 2 ≤ s ≤ 4 so S has density function (s− 2)/2, when 2 ≤ s ≤ 4. Since S
and T3 are independent, the pdf of T is the convolution of pdf’s for S and T3. So, we get:

fT (t) =

{
(u− 4)2/8 if 4 < u < 6
1
2

[
1− (u−6)2

4

]
if 6 < u < 8

20. Suppose X has density function x/2 for 0 < x < 2 and 0 otherwise. Find the density function of
Y = X(2−X).

Solution:

P (Y ≥ y) = P (X2 − 2X + 1 ≤ 1− y)

= P (|X − 1| ≤
√
1− y)

= F (1 +
√
1− y)− F (1−

√
1− y)

Differentiating we see that the density function of Y is (for 0 ≤ y ≤ 1)

f(1−
√
1− y) + f(1 +

√
1− y)

2
√
1− y

= 1/(2
√
1− y)
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21. Suppose X1 and X2 have joint density

f(x1, x2) =

{
1 for 0 < x1, x2 < 1
0 otherwise

Find the density of Y1 = X1/X2 and Y2 = X1X2.

Solution: The map r(x1, x2) = (x1/x2, x1x2) has the inverse

s(y1, y2) =
[
(y1y2)

1/2, (y2/y1)
1/2
]

The elements of the Jacobian are equal to: D11 =
1
2y

−1/2
1 y

1/2
2 , D12 =

1
2y

1/2
1 y

−1/2
2 , D21 = −1

2y
−3/2
1 y

1/2
2 , D22 =

1
2y

−1/2
1 y

−1/2
2 and the Jacobian is D = 1

2y
−1
1 . Thus

fY1,Y2(y1, y2) = 1/2y1 for 0 < y1y2 < 1, 0 < y2 < y1

22. Let

fXY (x, y) = 1/π if 0 ≤ x2 + y2 ≤ 1

= 0 elsewhere

Find the pdf of r2 = x2 + y2 and θ = tan−1y/x. Solve the same problem for the following joint pdf:

fXY (x, y) = Ae−(x2+y2)

We solve the second part of the problem which is more general. Consider,

fX,Y (x, y) = fX(x)fY (y) =
1

2πσ2
exp

(
−x2 + y2

2σ2

)
(4)

where σ2 = 1/2 and A = 1/π. For the polar coordinates we have,

R =
√
X2 + Y 2

Θ = arctan(Y/X)
(5)

This results in,

J(x, y) =

[ x√
x2+y2

y√
x2+y2

−y
x2+y2

x
x2+y2

]
(6)

We have,

|det[J(x, y)]| = 1√
x2 + y2

=
1

r
(7)

The set of equations, {
r =

√
x2 + y2

θ = arctan(y/x)
(8)

has only one solution given by, {
x = r cos θ
y = r sin θ

(9)
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Substituting these results, we obtain,

fR,Θ(r, θ) = rfX,Y (r cos θ, r sin θ) =
r

2πσ2
exp

(
− r2

2σ2

)
(10)

The marginal pdf’s for R, Θ are equal to,

fΘ(θ) =

∫ ∞

0
fR,Θ(r, θ)dr

=
1

2π

∫ ∞

0

r

σ2
exp

(
− r2

2σ2

)
dr

=
−1

2π

[
exp

(
− r2

2σ2

)]∞
0

=
1

2π
=⇒ Θ has a uniform distribution in [0, 2π]

(11)

and

fR(r) =

∫ 2π

0
fR,Θ(r, θ)dθ =

r

σ2
exp

(
− r2

2σ2

)
, r ≥ 0 (12)

Then,

fR(r) =


r

σ2
exp

(
− r2

2σ2

)
, r ≥ 0

0 r < 0

(13)

This is known as the Raleigh probability density function. We also note that

fR,Θ(r, θ) = fR(r)fΘ(θ). (14)

This means that R and Θ are independent of each other.

23. Let

fXY (x, y) = e−(x+y), x, y ≥ 0

= 0 elsewhere

Find the pdf of Z = X + Y .

Solution: Noticing that X and Y are independent, the pdf of Z is the convolution of pdf’s for X
and Y . This results:

fZ(z) = ze−z, z ≥ 0

= 0 elsewhere

24. Suppose a point (X,Y ) is chosen at random in the unit circle x2+ y2 ≤ 1. Find the marginal density
function of X.

Solution: The bivariate density function is uniform over the unit circle and hence has height 1/π.
The marginal density function for X is then

fX(x) =

∫ √
1−x2

−
√
1−x2

1

π
dy =

2

π

√
1− x2 , − 1 < x < 1 .
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25. Suppose X and Y have the joint density function f(x, y). Are X and Y independent if:

(i) f(x, y) = xe−x(1+y) , x, y > 0.
(ii) f(x, y) = 6xy2 when x, y ≥ 0 and x+ y < 1.
(iii) f(x, y) = (x+ y)2 − (x− y)2 when 0 ≤ x, y ≤ 1.

Solution: (i)

fX(x) =

∫ ∞

0
xe−xe−xydy = e−x , x ≥ 0

and

fY (y) =

∫ ∞

0
xe−x(1+y)dx =

1

(1 + y)2
, y ≥ 0

and since f(x, y) ̸= fX(x)fY (y) X and Y are not independent.

(ii)

fX(x) =

∫ 1−x

0
6xy2dy = 2x(1− x)3 , 0 ≤ x ≤ 1

and

fY (y) =

∫ 1−y

0
6xy2dx = 3y2(1− y)2 , 0 ≤ y ≤ 1

and clearly X and Y are not independent.

(iii) Notice that f(x, y) = 4xy and so fX(x) = 2x , 0 ≤ x ≤ 1 and fY (y) = 2y , 0 ≤ y ≤ 1 and X
and Y are independent.

26. The bivariate random variable (X,Y ) has the joint pdf:

f(x, y) =

{
4x(1− y) 0 ≤ x, y ≤ 1
0 elsewhere

(i) find the marginal density functions ofX and Y and determine whether or not they are independent.
(ii) Determine the probability that Y > X2.

Solution: (i) By straight forward computation the marginals are determined as

fX(x) =

∫ 1

0
4x(1− y)dy = 2x , 0 ≤ x ≤ 1

fY (y) =

∫ 1

0
4x(1− y)dx = 2(1− y) , 0 ≤ y ≤ 1

and X and Y are independent.

(ii)

P (Y > X2) =

∫ 1

0

{∫ 1

x2
4x(1− y)dy

}
dx = 1/3 .

27. (X,Y ) is a bivariate random variable which is uniformly distributed over the triangle x, y ≥ 0, x+y ≤
1. (i) Find the marginal pdf, mean and variance of X. (ii) Find the correlation coefficient ρXY .

Solution: (i) Notice that the problem is symmetric in X and Y . The marginal of X is fX(x) =
2(1− x) , 0 ≤ x ≤ 1. The mean and variance of X are, respectively:

E(X) =

∫ 1

0
x · 2(1− x)dx = 1/3 , E(X2) =

∫ 1

0
x2 · 2(1− x)dx = 1/6 and V (X) = 1/18.
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(ii) To compute the correlation coefficient of X and Y we need:

E(XY ) = 2

∫ 1

0
x

{∫ 1−x

0
ydy

}
dx = 1/12

and thus

ρXY =

1

12
− 1

3
· 1
3√

1

18
· 1

18

= −1

2
.

28. Suppose that X and Y have the joint probability density function

fXY =

{
(2m+ 6)xmy 0 < y < x < 1
0 otherwise.

Show that this is a probability density function and find E(Y |X) and V (Y |X).

Solution: The marginal density of X is

fX(x) =

∫ x

0
(2m+ 6)xmydy = (m+ 3)xm+2 , 0 ≤ x ≤ 1

and notice that ∫ 1

0
(m+ 3)xm+2dx = 1

and hence is a pdf. The conditional pdf is

fY |X(y|x) = 2(m+ 3)xmy

(m+ 3)xm+2
=

2y

x2
, 0 ≤ y ≤ x

and

E(Y |X = x) =

∫ x

0
y · 2y

x2
dy =

2

3
x , E(Y 2|X = x) =

∫ x

0
y2 · 2y

x2
dy =

1

2
x2

and V (Y |X) = E(Y 2|X = x)− E2(Y |X = x) = x2/18.

29. If X is a binomial random variable with parameters n and p and Y is a binomial random variable
with parameters m and p, X and Y independent, and Z = X + Y , find E(X|Z).

Solution:

P (X = j|Z = X + Y = l) = P (X=j and Y=l−j)
P (X+Y=l) = P (X=j)P (Y=l−j)

P (X+Y=l)

=
(nj)(

m
l−j)

(n+m
l )

which is a hypergeometric distribution. The mean of this distribution is in the text and is E(X|Z) =
nl/(n+m).

30. If (X,Y ) is a bivariate normal random variable with pdf

fXY (x, y) =
1

π
√
3
exp{−2

3
(x2 − xy + y2)}
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(i) Find the probability that P (Y > 3|X = 2) and compare this to P (Y > 3).

(ii) Find E(Y |X).

Solution: (i) As with the previous problem, the five parameters of the bivariate density are found
as

µX = µY = 0 σX = σY = 1 ρXY = 1/2 .

Consequently the conditional density function fY |X(y|x) ∼ N(12x,
3
4). Then

P (Y > 3|X = 2) =

∫ ∞

3

e−(y−1)2/(3/2)

√
2π
√
3/4

dy = 1− Φ(
4√
3
) .

Since Y ∼ N(0, 1),

P (Y > 3) =

∫ ∞

3

e−y2/2

√
2π

dy = 1− Φ(3) .

(ii) E(Y |X) = X/2.

31. The time in minutes taken by person A to complete a certain task is assumed to be a random variable
with an exponential pdf with parameter α1. The time taken by person B is independent of that for
person A and has an exponential pdf with parameter α2 i.e.

fX(x) = α1e
−α1x , x ≥ 0, fY (y) = α2e

−α2y , y ≥ 0

(i) What is the probability it takes A longer to complete the task than B?

(ii) If α1 = α2 what is the probability the tasks are finished within two minutes of each other?

Solution: (i) Let X be the time taken by person A and Y that taken by person B.

P (X > Y ) =

∫ ∞

0

{∫ x

0
α2e

−α2ydy

}
α1e

−α1xdx

which can be computed to be

P (X > Y ) =
α2

α1 + α2
.

(ii) It is desired to compute P (|X − Y | < 2). Let α1 = α2 = α. Consider

P (Y < X − 2) =

∫ ∞

2

{∫ x−2

0
αe−αydy

}
αe−αxdx

which is readily evaluated to e−2α/2. The required probability is then P (|X − Y | < 2) = 1 −
2(e−2α/2) = 1− e−2α.

32. Let X and Y be independent random variables, each with an exponential density function with
parameter α (i.e. fX(x) = αe−αx , x ≥ 0). Find the density function of Z = X/(X + Y ).

Solution:

FZ(z) = P ( X
X+Y ≤ z) = P (X ≤ z(X + Y )) = P (X ≤ z

1−zY )

=

∫ ∞

0

{∫ ∞

(1−z)x/z
αe−αydy

}
αe−αxdx =

∫ ∞

0
e−α(1−z)x/zαe−αxdx

=

∫ ∞

0
αe−αx/zdx = z
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and hence fZ(z) = 1 , 0 ≤ z ≤ 1.

33. Let X, Y and Z be independent and identically distributed random variables, each with an expo-
nential pdf with parameter α. Find the probability density function of W = X + Y + Z.

Solution: Let U = X + Y then

fU (u) =

∫ u

0
fX(u− y)fY (y)dy =

∫ u

0
αe−α(u−y)αe−α(y)dy = α2ue−αu , 0 ≤ u < ∞

The process is repeated to find the density of W :

fW (w) =

∫ w

0
αe−α(w−v)α2ve−α(v)dv =

α3

2
w2e−αw , w ≥ 0

34. Let X and Y be independent random variables with density functions:

fX(x) = αe−αx , x ≥ 0 fY (y) = αn yn−1

(n− 1)!
e−αy , y ≥ 0

for n a positive integer. (i) Find the pdf of U = X + Y . (ii) Find the pdf of W = X/(X + Y ).

Solution: We use the same technique as the previous two problems:

fU (u) =

∫ u

0
αe−α(u−y) αn

(n− 1)!
yn−1e−α(y)dy =

αn+1

n!
une−αu .

Notice that this implies that if Z = X1 + · · ·Xn, where the Xi are i.i.d., each with a density
α exp(−αx), then the pdf of Z is:

fZ(z) = αn zn−1

(n− 1)!
e−αz z ≥ 0 .

35. Let X and Y be independent random variables with the pdf’s:

fX(x) = e−x , x ≥ 0, fY (y) = e−y , y ≥ 0 .

Find the pdf of the random variable Z = (X−Y )/(X+Y ) and specify clearly its region of definition.

Solution: Notice that Z takes values in the range [−1, 1].

FZ(z) = P (X−Y
X+Y ≤ z) = P ((X − Y ) ≤ z(X + Y )) = P ((1−z

1+z )X ≤ Y )

=
∫∞
0

{∫∞
1−z
1+z

x e
−y

}
e−xdx

=
∫∞
0 e−

1−z
1+z

x · e−xdx = 1+z
2 , − 1 ≤ z ≤ 1 .

Hence fZ(z) = 1/2 , − 1 ≤ z ≤ 1 and zero elsewhere.
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36. The random variables X and Y have the joint probability density function

fXY (x, y) = xe−x(1+y) , 0 ≤ x, y < ∞ .

Find the pdf of Z = XY .

Solution:
FZ(z) = P (Z ≤ z) = P (XY ≤ z)

=
∫∞
0

{∫ z/x
0 xe−x(1+y)dy

}
dx

=
∫∞
0 xe−x

{
− 1

xe
−xy|z/x0

}
dx = 1− e−z

and consequently fZ(z) = dFZ(z)/dz = e−z , z ≥ 0.

37. Let Y be a random variable with pdf fX(x) = e−x , x ≥ 0. Find the pdf of the random variable
Y = 1− e−X , X ≥ 0. Show that, in general, if X has the pdf fX(x) and cdf FX(x) then Y = FX(X)
is uniformly distributed on (0, 1).

Solution: Notice that Y takes values in the range [0, 1] and −ln(1− y) > 0.

FY (y) = P (Y ≤ y) = P (1− e−X ≤ y) = P (X ≤ −ln(1− y))

=
∫−ln(1−y)
0 e−xdx = 1− eln(1−y) = y

and consequently fY (y) = dFY (y)/dy = 1 , 0 ≤ y ≤ 1.

In the general case, note that we are using the cdf as a montonic function, and that again Y takes
values in [0, 1]:

FY (y) = P (Y ≤ y) = P (FX(X) ≤ y) = P (X ≤ F−1
X (y))

= FX(F−1
X (y)) = y , 0 ≤ y ≤ 1

where F−1
X (·) is the inverse function of FX(·). The result that Y is a uniformly distributed random

variable on [0, 1] follows.

38. Let X, Y be independent normal random variables, each with zero mean and variance σ2. Show that
Z = X + Y has a normal density N(0, 2σ2).

Solution: As in previous problems:

FZ(z) =

∫ ∞

−∞

1√
2πσ

e−(z−x)2/(2σ2) · 1√
2πσ

e−x2/(2σ2)dx

=

∫ ∞

−∞

1

2πσ2
e−

1
2σ2 (2x

2−2zx+z2)dx

=
1

2πσ2

∫ ∞

−∞
e−

2
2σ2 {(x−z/2)2+z2/4}dx

=
1√
4πσ

e−z2/4σ2 ∼ N(0, 2σ2) .
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7 Properties of Expectation

7.1 Introduction

In this chapter we develop and exploit additional properties of expected values.

7.2 Expectation of Sums of Random Variables

Suppose that X and Y are random variables and g is a function of two variables. Then we have the
following result.
Proposition: If X and Y have a joint probability mass function p(x, y), then

E[g(X,Y )] =
∑
y

∑
x

g(x, y)p(x, y)

If X and Y have a joint probability density function f(x, y), then

E[g(X,Y )] =

∫ ∞

−∞

∫ ∞

−∞
g(x, y)f(x, y)dxdy

For an important application of this proposition, suppose that E[X] and E[Y ] are both finite and let
g(X,Y ) = X + Y . Then, in the continuous case,

E[X + Y ] =

∫ ∞

−∞

∫ ∞

−∞
(x+ y)f(x, y)dxdy

=

∫ ∞

−∞

∫ ∞

−∞
xf(x, y)dxdy +

∫ ∞

−∞

∫ ∞

−∞
yf(x, y)dxdy

=

∫ ∞

−∞
xfX(x)dx+

∫ ∞

−∞
yfY (y)dy

= E[X] + E[Y ]

The same result holds in general.
Using this result and induction shows that, if E[Xi] is finite for all i = 1, . . . , n, then

E[X1 + · · ·+Xn] = E[X1] + · · ·+ E[Xn]
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7.3 Covariance, Variance of Sums, and Correlations

Proposition: If X and Y are independent, then for any functions h and g,

E[g(X)h(Y )] = E[g(X)]E[h(Y )]

Definition: The covariance between X and Y , denoted by Cov(X,Y ), is defined by

Cov(X,Y ) = E[(X − E[X])(Y − E[Y ])]

Just as the expected value and the variance of a single random variable give us information about this
random variable, so does the covariance between two random variables give us information about the
relationship between the random variables.

Upon expanding the preceding definition, we see that

Cov(X,Y ) = E[XY ]− E[X]E[Y ]

Note that if X and Y are independent then using the preceding proposition, it follows that Cov(X,Y ) = 0.
However, the converse is not true.

Proposition:
(i) Cov(X,Y ) = Cov(Y,X)
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(ii) Cov(X,X) = Var(X)

(iii) Cov(aX, Y ) = aCov(X,Y )

(iv) Cov

 n∑
i=1

Xi,
m∑
j=1

Yj

 =
n∑

i=1

m∑
j=1

Cov(Xi, Yj)
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It follows from parts (ii) and (iv) of the preceding proposition, upon taking Yj = Xj , j = 1, . . . , n, that

Var

(
n∑

i=1

Xi

)
= Cov

 n∑
i=1

Xi,
n∑

j=1

Xj


=

n∑
i=1

n∑
j=1

Cov(Xi, Xj)

=
n∑

i=1

Var(Xi) +
n∑

i=1

∑
j ̸=i

Cov(Xi, Xj)

Since each pair of indices, i, j, i ̸= j appears twice in the double summation, the above is equivalent to the
following:

Var

(
n∑

i=1

Xi

)
=

n∑
i=1

Var(Xi) + 2
n∑

i=1

∑
j>i

Cov(Xi, Xj)

If X1, . . . , Xn are pairwise independent, the preceding equation reduces to

Var

(
n∑

i=1

Xi

)
=

n∑
i=1

Var(Xi)

Definition: The correlation of two random variables X and Y , denoted by ρ(X,Y ), is defined, as long as
Var(X)Var(Y ) is positive, by

ρ(X,Y ) =
Cov(X,Y )√
Var(X)Var(Y )

It can be shown that
−1 ≤ ρ(X,Y ) ≤ 1
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In fact, ρ(X,Y ) = 1 implies that Y = a + bX, where b = σX/σY > 0 and ρ(X,Y ) = −1 implies that
Y = a + bX, where b = −σX/σY < 0. The reverse is also true, if Y = a + bX, then ρ(X,Y ) is either +1
or -1, depending on the sign of b.
The correlation coefficient is a measure of the degree of linearity between X and Y . A value of ρ(X,Y )
near +1 or -1 indicates a high degree of linearity between X and Y , whereas a value near 0 indicates a lack
of such linearity. A positive value of ρ(X,Y ) indicates that Y tends to increase when X does, whereas a
negative value indicates that Y tends to decrease when X increases. If ρ(X,Y ) = 0, then X and Y are
said to be uncorrelated.

7.4 Conditional Expectation

7.4.1 definitions

We saw that for two jointly discrete random variables X and Y , given that Y = y, the conditional
probability mass function is defined by

pX|Y (x|y) = P{X = x|Y = y} =
p(x, y)

pY (y)

So, the conditional expectation of X, given that Y = y, for all values of y such that pY (y) > 0 by

E[X|Y = y] =
∑
x

xp{X = x|Y = y}

=
∑
x

xpX|Y (x|y)

Similarly for the case of continuous random variables, we have

E[X|Y = y] =

∫ ∞

−∞
xfX|Y (x|y)dx

where

fX|Y (x|y) =
f(x, y)

fY (y)

for all y such that fY (y) > 0.
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Similar to ordinary expectations we have

E[g(X)|Y = y] =


∑
x

g(x)pX|Y (x|y) in the discrete case∫ ∞

−∞
g(x)fX|Y (x|y)dx in the continuous case

and

E

[
n∑

i=1

Xi|Y = y

]
=

n∑
i=1

E[Xi|Y = y]

7.4.2 Computing Expectations by Conditioning

Let us denote by E[X|Y ] that function of a random variable Y whose value at Y = y is E[X|Y = y].
Note that E[X|Y ] is itself a random variable. An extremely important property of conditioning property
of conditional expectation is given by the following proposition.
Proposition:

E[X] = E[E[X|Y ]]

One way to understand this equation is to interpret it as follows: To calculate E[X], we may take a
weighted average of the conditional expected value of X, given that Y = y, each of the terms E[X|Y = y]
being weighted by the probability of the event on which it is conditioned.

7.4.3 Computing probabilities by Conditioning

We can also use conditioning to find probabilities. To see this, let E denote an arbitrary event and define
the indicator random variable X by

X =

{
1 if E occurs
0 if E does not occur

It follows from the definition of X that

E[X] = P (E)
E[X|Y = y] = P (E|Y = y) for any random variable Y
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Therefore,

P (E) =
∑
y

P (E|Y = y)P (Y = y) if Y is discrete

=

∫ ∞

−∞
P (E|Y = y)fY (y)dy if Y is continuous

Note that if Y is a discrete random variable taking on one of the values y1, . . . , yn, then, by defining the
events Fi, i = 1, . . . , n by Fi = {Y = yi}, this equation reduces to the familiar equation

P (E) =
n∑

i=1

P (E|Fi)P (Fi)

7.4.4 Conditional Variance

We can define the conditional variance of X given that Y = y by

Var(X|Y ) ≡ E[(X − E[X|Y ])2|Y ]

and after simplification
Var(X|Y ) = E[X2|Y ]− (E[X|Y ])2

There is a very useful relationship between Var(X), the unconditional variance of X, and Var(X|Y ), the
unconditional variance of X given Y .

E[Var(X|Y )] = E[E[X2|Y ]]− E[(E[X|Y ])2]
= E[X2]− E[(E[X|Y ])2]

Also, as E[X] = E[E[X|Y ]], we have

Var(E[X|Y ]) = E[(E[X|Y ])2]− (E[X])2

By adding these two equations we obtain the following proposition.
Proposition:

Var(X) = E[Var(X|Y )] + Var(E[X|Y ])
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7.5 Conditional Expectation and Prediction

Sometimes a situation arises where the value of a random variable X is observed and then, based on the
observed value, an attempt is made to predict the value of a second random variable Y . We would like to
choose a function g so that g(X) tends to be close to Y . One possible criterion for closeness is to choose
g so as to minimize E[(Y − g(X))2]. The best possible predictor of Y is g(X) = E[Y |X].
Proposition:

E[(Y − g(X))2] ≥ E[(Y − E[Y |X])2]

Linear Predictor: Sometimes the joint probability distribution function of X and Y is not completely
known. If we know the means and variances of X and Y and correlation between them we can at least
determine the best linear predictor of Y with respect to X. To obtain the best linear prediction of Y in
respect to X, we need to choose a and b so as to minimize E[(Y − (a+ bX))2].
Minimizing this equation over a and b, yields

b =
E[XY ]−E[X]E[Y ]

E[X2]− (E[X])2
=

Cov(X,Y )

σ2
X

= ρ
σY
σX

a = E[Y ]− bE[X] = E[Y ]− ρσY E[X]

σX

7.6 Moment Generating Function

The moment generating function M(t) of a random variable X is defined for all real values of t by

M(t) = E[etX ] =


∑
x

etxp(x) if X is discrete with mass function p(x)∫ ∞

−∞
etxf(x)dx if X is continuous with density f(x)

We call M(t) the moment generating function because all of the moments of X can be obtained by
successively differentiating M(t) and then evaluating the result at t = 0. For example,

M ′(0) = E[X]



ECE316 Notes-Winter 2017: A. K. Khandani 121

and
M ′′(0) = E[X2]

In general the nth derivative of M(t) is given by

Mn(0) = E[Xn] n ≥ 1

The moment generating function of some random variables are as follows.
Moment Generating Functions of Some Random Variables
If X is a binomial random variable with parameters n and p, then

M(t) = (pet + 1− p)n

If X is a Poisson random variable with parameter λ, then

M(t) = exp{λ(et − 1)}

If X is an exponential random variable with parameter λ, then

M(t) =
λ

λ− t
for t < λ

If X is a standard normal random variable with parameters 0 and 1, then

M(t) = et
2/2

If X is a normal random variable with parameters µ and σ2, then

M(t) = exp

{
σ2t2

2
+ µt

}

Moment Generating function of the Sum of Independent Random Variables:An important prop-
erty of moment generating function is the moment generating function of the sum of independent random
variables equals to the product of the individual moment generating functions. If X and Y are independent,
then

MX+Y (t) = MX(t)MY (t)



ECE316 Notes-Winter 2017: A. K. Khandani 122

7.6.1 Joint Moment Generating Functions

It is also possible to define the joint moment generating function of two or more random variables.

M(t1, . . . , tn) = E[et1X1+···+tnXn ]

The individual moment generating functions can be obtained from M(t1, . . . , tn) by letting all but one of
the tj be 0.

MXi(t) = M(0, . . . , 0, t, 0, . . . , 0)

where the t is in the ith place.
It can be proved that M(t1, . . . , tn) uniquely determines the joint distribution of X1, . . . , Xn.

Joint Moment Generating function of Independent Random Variables: If the n random vari-
ables are independent, then

M(t1, . . . , tn) = MX1(t1) · · ·MXn(tn)

On the other hand, if this equation is satisfied, then the n random variables are independent.
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7.7 Some Solved Problems

1. Let X and Y be two independent standard normal random variables (i.e. N(0, 1)). Find:

(i) E(|X|) (ii) E(X + Y ) (iii) V (X − Y ) (iv) E(
√
X2 + Y 2).

Solution: (i)

E(|X|) = 2

∫ ∞

0
x
e−x2/2

√
2π

dx =

√
2

π

where an elementary property of the normal integral has been used.

(ii)
E(X + Y ) = E(X) + E(Y ) = 0

(iii) Since E(X − Y ) = 0 then

V (X − Y ) =

∫ ∞

−∞
(x− y)2

e−(x2+y2)/2

2π
dxdy = 1 + 1 = 2

(iv)

E(
√
X2 + Y 2) =

∫ ∞

−∞

∫ ∞

−∞
(x2 + y2)1/2

e−(x2+y2)/2

2π
dxdy

=

∫ ∞

0

∫ 2π

0
r2

e−r2/2

2π
drdθ =

√
π

2
.

2. Suppose X and Y have the joint density function e−y for 0 < x < y < ∞. Find the least mean
squares line of Y on X and E(Y |X).

Solution:

fX(x) =

∫ ∞

x
e−ydy = e−x , 0 ≤ x < ∞

and
fY |X(y|x) = e−(y−x) , x < y < ∞

and

E(Y |X = x) =

∫ ∞

x
ye−(y−x)dy = x+ 1

Any time the conditional expectation is linear it is also the least squares line. However, for complete-
ness, we compute the least squares line as well.

E(X) =

∫ ∞

0
xe−xdx = 1 E(X2) = 2 V (X) = 1

E(Y ) =

∫ ∞

0
y · ye−ydy = 2 E(Y 2) = 6 V (Y ) = 2

and

E(XY ) =

∫ ∞

0

{∫ y

0
xdx

}
ye−ydy = 3

and thus

ρXY =
3− 1 · 2√

1
√
2

=
1√
2

and thus the least mean squares line is x+ 1, as before.
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3. Let (X,Y ) be a bivariate random variable such that E(X) = 0, E(Y ) = 3, V (X) = 3, V (Y ) = 5
and ρXY = 1/2. Find the mean and variance of the random variable Z = 2X − 3Y .

Solution: In general it is easy to show (do it!) that

V (aX + bY ) = a2V (X) + b2V (Y ) + 2abρXY σXσY .

Using this formula it follows that

µZ = 2µX − 3µY = −9 and V (Z) = 57− 6
√
15 .

4. It is known that the vertical and horizontal errors of a computer plotter, in standardized units, form
a bivariate normal random variable with joint pdf

fXY (x, y) =
3

4π
√
8
exp{− 9

16
(x2 − xy

3
− 4x

3
+

y2

4
− 2y

3
+

4

3
)}

(i) Find E(Y |X).

(ii) For what value of the constant a will the random variables X and Z = X + aY be independent?

(iii) Find the probability that |X − Y | < 1. (Note: Sums of normal random variables are normal.)

Solution: By comparing the form of the given bivariate normal density with that of the standard
one, we can set up equations to be solved for the five parameters. The solutions are:

µX = 2/3 , µY = 4/3 , σX = 1 , σY = 2 , ρXY = 1/3

and these may be verified by substituting into the general form.

(i) E(Y |X) = µY + ρXY
σY
σX

(x− µX) = 2
3X + 8

9 .

(ii) The value of a such that E(XZ) = E(X)E(Z) is sought. By direct computation:

E(XZ) = E(X)E(Z) = E(X(X + aY )) = E(X)(E(X) + aE(Y ))

or
V (X) + aρXY σXσY = 0

and from the parameters found, this implies that a = −3/2.

(iii) From the parameters already found, let Z = X − Y and note that

µZ = −2/3 and V (Z) = V (X − Y ) = 11/3

Thus P (|X − Y | < 1) = P (|Z| < 1) = Φ( 5√
33
)− Φ(− 1√

33
).
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8 Limit Theorems

8.1 Introduction

The most important theoretical results in probability theory are limit theorems. Of these, the most
important are those that are classified either under the heading laws of large numbers or under the heading
central limit theorems. Usually, theorems are considered to be laws of large numbers if they are concerned
with stating conditions under which the average of a sequence of random variables converges (in some
sense) to the expected average. On the other hand, central limit theorems are concerned with determining
conditions under which the sum of a large number of random variables has a probability distribution that
is approximately normal.

8.2 Chebyshev’s (Tchebychev) Inequality and the Weak Law of Large Numbers

Proposition, Markov’s Inequality: If X is a random variable that takes only nonnegative values, then
for any value a > 0,

P{X ≥ a} ≤ E[X]

a

Proposition, Chebyshev’s Inequality: If X is a random variable with finite mean µ and variance σ2,
then for any value k > 0,

P{|X − µ| ≥ k} ≤ σ2

k2
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The importance of Markov’s and Chebyshev’s inequalities is that they enable us to derive bounds on the
probabilities when only the mean, or both the mean and the variance, of the probability distribution
are known. Of course, if the actual distributions were known, then the desired probabilities could be
exactly computed and we would not need to resort to bounds. Because Chebyshev’s inequalities is valid
for all distributions of the random variable X, we cannot expect the bound to be very close to the actual
probability.
Proposition: If Var(X) = 0, then

P{X = E[X]} = 1

In other words, the only random variables having variances equal to 0 are those that are constant with
probability 1.

Theorem: The Weak Law of Large Numbers Let X1, X2, . . . be a sequence of independent and iden-
tically distributed random variables, each having finite mean E[Xi] = µ. Then, for any ϵ > 0,

P

{∣∣∣∣X1 + · · ·+Xn

n
− µ

∣∣∣∣ ≥ ϵ

}
→ 0 as n → ∞

8.3 The Central Limit Theorem

The central limit theorem is one of the most remarkable results in probability theory. It states that the
sum of a large number of independent random variables has a distribution that is approximately normal.
Hence it not only provides simple method for computing approximate probabilities for sums of independent
random variables, but it also helps explain the remarkable fact that the empirical frequencies of so many
natural populations exhibit bell-shaped (normal) curves.
Theorem, The Central Limit Theorem: Let X1, X2, . . . be a sequence of independent and identically
distributed random variables, each having µ and variance σ2. Then, the distribution of

X1 + · · ·+Xn − nµ

σ
√
n

tends to the standard normal as n → ∞. That is, for −∞ < a < ∞,

P

{
X1 + · · ·+Xn − nµ

σ
√
n

≤ a

}
→ 1√

2π

∫ a

−∞
e−x2/2dx as n → ∞
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Remark. Although central limit theorem only states that for each a,

P

{
X1 + · · ·+Xn − nµ

σ
√
n

≤ a

}
→ Φ(a)

it can be shown that the convergence is uniform in a. [We say that fn(a) → f(a) uniformly in a, if for
each ϵ > 0, there exists an N such that |fn(a)− f(a)| < ϵ for all a whenever n ≥ N .]

Theorem, Central Limit Theorem for Independent Random Variables:
Let X1, X2, . . . be a sequence of independent random variables having respective means and variances
µi = E[Xi], σ

2
i = Var(Xi). If (a) the Xi are uniformly bounded; that is, if for some M , P{|Xi| < M} = 1

for all i, and (b)
∞∑
i=1

σ2
i = ∞, then

P



n∑
i=1

(Xi − µi)√√√√ n∑
i=1

σ2
i

≤ a


→ Φ(a) as n → ∞

8.4 The Strong Law of Large Numbers

The strong law of large numbers states that the average of a sequence of independent random variables
having a common distribution will, with probability 1, converge to the mean of that distribution.
Theorem, The Strong Law of Large Numbers: Let X1, X2, . . . be a sequence of independent and
identically distributed random variables, each having a finite mean µ = E[Xi]. Then, with probability 1,

X1 +X2 · · ·+Xn

n
→ µ as n → ∞

As an application of the strong law of large numbers, suppose that a sequence of independent trials of some
experiment is performed. Let E be a fixed event of the experiment and denote by P (E) the probability
that E occurs on any particular trial. Letting

Xi =

{
1 if E occurs on th ith trial
0 if E does not occur on th ith trial

we have by the strong law of large numbers that with probability 1,

X1 +X2 · · ·+Xn

n
→ E[X] = P (E)
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The difference between the Weak and the Strong Law of Large Numbers: The weak law of large

numbers states that for any specified large value n∗, (X1+X2 · · ·+Xn∗)/n∗ is likely to be near µ. However,
it does not say that (X1+X2 · · ·+Xn)/n is bound to stay near µ for all values of n larger than n∗. Thus it
leaves open the possibility that large values of |(X1+X2 · · ·+Xn)/n−µ| can occur infinitely often (though
at infrequent intervals). The strong law of large numbers shows that this cannot occur.
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9 Stochastic Processes

Definitions

Stochastic Process: A stochastic process X(t) consists of an experiment with a probability measure P [·]
defined on a sample space S and a function that assigns a time function x(t, s) to each outcome s in the
sample space of the experiment.

Sample Function: A sample function x(t, s) is the time function associated with the outcome s of an
experiment.

Ensemble: The ensemble of a stochastic process is the set of all possible time functions that can result
from an experiment.

9.1 Stochastic Process Examples

Example: Starting on January 1, we measure the noontime temperature at Network Airport every day for
one year. This experiment generates a sequence of temperatures C(1), C(2), . . . , C(365). With respect to
the kinds of averages of the stochastic processes, people make frequent reference to both ensemble averages
such as “the average noontime temperature for February 19,” and time averages, such as “average noontime
temperatures for 1923.”

9.2 Types of Stochastic Processes

Discrete Value and Continuous Value Processes: X(t) is a discrete value process if the set of all
possible value of X(t) at all times t is a countable set SX ; otherwise X(t) is a continuous value process.

Discrete Time and Continuous Time Process: The stochastic process X(t) is a discrete time process
if X(t) is defined only for a set of time instants, tn = nT , where T is a constant and n is an integer;
otherwise X(t) is a continuous time process.

So according to these definitions there are four types of stochastic processes:

• discrete time, discrete value process;

• discrete time, continuous value process;

• continuous time, discrete value process; and
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• continuous time, continuous value process.

Random Sequence: A random sequence Xn is an ordered sequence of random variables X0, X1, . . .

9.3 Independent, Identically Distributed Random Sequences

An independent identically distributed (iid) random sequence is a random sequence, Xn, in which
. . . , X−2, X−1, X0, X1, X2, . . . are iid random variables. An iid random sequence occurs whenever we per-
form independent trials of an experiment at a constant rate.

9.4 Random Variables from Random Processes

Suppose we observe a stochastic process at a particular time instant t1. In this case, each time we perform
the experiment, we observe a sample function x(t, s) and that sample function specifies the value of x(t1, s).
Therefore, each x(t1, s) is a sample value of random variable. We use the notation X(t1) for this random
variable. Like any other random variable , it has either a PDF fX(t1)(x) or a PMF pX(t1)(x).
Bernoulli Process: A Bernoulli process Xn with success probability p is an iid random sequence in which
each Xn is a Bernoulli random variable such that P{Xn = 1} = p = 1− P{Xn = 0}.

9.5 The Poisson Process

Counting Process: A stochastic processN(t) is a counting process if for every sample function, n(t, s) = 0
for t < 0 and n(t, s) is integer valued and nondecreasing with time.
We can think of n(t) as counting the number of customers that arrive at a system during the interval (0, t].
We can use a Bernoulli process X1, X2, . . . to derive a simple counting process. In particular, consider a
small time step of size ∆ such that there is an arrival in the interval (n∆, (n+ 1)∆] if and only if Xn = 1.
For an arbitrary constant λ > 0, we can choose ∆ small enough to ensure λ∆ < 1. In this case, we choose
the success probability of Xn to be λ∆. This implies that the number of arrivals Nm by time T = m∆ has
the binomial PMF

pNm(n) =


(
m

n

)
(λT/m)n(1− λT/m)m−n n = 0, 1, . . . ,m

0 otherwise

When m → ∞, or equivalently as ∆ → 0, the PMF of Nm becomes a Poisson random variable N(T ) with
PMF

pN(T )(n) =

{
(λT )ne−λT /n! n = 0, 1, . . .
0 otherwise

Poisson Process: A counting process N(t) is a Poisson process of rate λ if

• The Number of arrivals in any interval (t0, t1], N(t1) − N(t0), is a Poisson random variable with
expected value λ(t1 − t0).

• For any pair of nonoverlapping intervals (t0, t1] and (t′0, t
′
1], the number of arrivals in each interval,

N(t1)−N(t0) and N(t′1)−N(t′0) respectively, are independent random variables.
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By the definition of a Poisson random variable, M = N(t1)−N(t0) has PMF

pM (m) =

 [λ(t1 − t0)]
m

m!
e−λ(t1−t0) m = 0, 1, . . .

0 otherwise

Theorem: For a Poisson process N(t) of rate λ, the joint PMF of N(t1), . . . , N(tk), t1 < t2 < . . . < tk, is

pN(t1),...,N(tk)(n1, . . . , nk) =


αn1
1 e−α1

n1!

αn2−n1
2 e−α2

(n2 − n1)!
· · ·

α
nk−nk−1

k e−αk

(nk − nk−1)!
0 ≤ n1 ≤ · · · ≤ nk

0 otherwise

where αi = λ(ti − ti−1).
The independence of intervals property of the Poisson process must hold even for very small intervals. For
example, the number of arrivals in (t, t+ δ] must be independent of the arrival process over [0, t] no matter
how small we choose δ > 0. Essentially, the probability of an arrival during any instant is independent of
the past history of the process. In this sense, the Poisson process is memoryless.
This memoryless property can also be seen when we examine the times between arrivals. The random time
between arrival n− 1 and arrival n is called the nth interarrival time. In addition, we call the time, X1, of
the first arrival the first interarrival time even though there is no previous arrival.
Theorem: For a Poisson process of rate λ, the interarrival times X1, X2, . . . are an iid random sequence
with the exponential PDF

fX(x) =

{
λe−λx x > 0
0 otherwise

The memoryless property of the Poisson process can also be seen in the exponential interarrival times.
Since P{Xn > x} = e−λx, the conditional probability that Xn − x′ > x given Xn > x′, is

P{Xn − x′ > x|Xn > x′} =
P{Xn > x′ + x,Xn > x′}

P{Xn > x′}
= e−λx
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Theorem: A counting process with independent exponential interarrivals X1, X2, . . . with mean E[Xi] =
1/λ is a Poisson process of rate λ

9.6 The Brownian Motion Process

The Poisson process is an example of a continuous time, discrete value stochastic process. Now we will
examine Brownian motion, a continuous time, continuous value stochastic process.
Brownian Motion Process: A Brownian motion process X(t) has the property that X(0) = 0 and for
τ > 0, X(t+ τ)−X(t) is a Gaussian random variable with mean 0 and variance ατ that is independent of
X(t′) for all t′ ≤ t.

For a Brownian motion, we can view X(t) as the position of a particle on a line. For a small time increment
δ,

X(t+ δ) = X(t) + [X(t+ δ)−X(t)]

Although this expansion may seem trivial, by the definition of Brownian motion, the increment Yδ =
X(t+ δ)−X(t), is independent of X(t) and is a Gaussian with mean zero and variance αδ. This property
of the Brownian motion is called independent increments. Thus after a time step δ, the particle’s position
has moved by an amount Yδ that is independent of the previous position X(t).
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The PDf of Yδ is

PYδ
(y) =

1√
2παδ

e
−

y2

2αδ ,−∞ < y < ∞

Theorem: For the Brownian motion process X(t), the joint PDF of X(t1), . . . , X(tk) is

fX(t1),...,X(tk)(x1, . . . , xk) =
k∏

n=1

1√
2πα(tn − tn−1)

e−(xn−xn−1)2/[2α(tn−tn−1)]

9.7 Expected Value and Correlation

The Expected Value of a Process: The expected value of a stochastic process X(t) is the deterministic
function

µX(t) = E[X(t)]

Autocovariance: The autocovariance function of the stochastic process X(t) is

CX(t, τ) = Cov[X(t), X(t+ τ)]

For τ = 0, the definition implies CX(t, 0) = Var[X(t)].
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Autocorrelation: The autocorrelation function of the stochastic process X(t) is

RX(t, τ) = E[X(t)X(t+ τ)]

Theorem: The autocorrelation and autocovariance functions of a process X(t) satisfy

CX(t, τ) = RX(t, τ)− µX(t)µX(t+ τ)

Autocovariance and Autocorrelation of a Random Sequence: The autocovariance function of the
random Xn is

CX [m, k] = Cov[Xm, Xm+k]

where m and k are integers. The autocorrelation function of the random sequence Xn is

RX [m, k] = E[XmXm+k]

9.8 Stationary Processes

Stationary Process: A stochastic process X(t) is stationary if and only if for all sets of time instants
t1, . . . , tm and any time difference τ ,

fX(t1),...,X(tm)(x1, . . . , xm) = fX(t1+τ),...,X(tm+τ)(x1, . . . , xm)
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Stationary Random Sequence: A random sequence Xn is stationary if and only if for any finite sets of
time instants n1, . . . , nm and any time difference k,

fXn1 ,...,Xnm
(x1, . . . , xm) = fXn1+k,...,Xnm+k

(x1, . . . , xm)

Theorem: For a stationary process X(t), the expected value, the autocorrelation, and the autocovariance
satisfy for all t:

µX(t) = µX

RX(t, τ) = RX(0, τ) = RX(τ)
CX(t, τ) = RX(τ)− µ2

X = CX(τ)

Theorem: For a stationary random sequence Xn, the expected value, the autocorrelation, and the auto-
covariance satisfy for all m:

E[Xm] = µX

RX [m, k] = RX [0, k] = RX [k]
CX [m, k] = RX [k]− µ2

X = CX [k]

9.9 Wide Sense Stationary Random Processes

Wide Sense Stationary: X(t) is a wide sense stationary process if and only if for all t,

E[X(t)] = µX

RX(t, τ) = RX(0, τ) = RX(τ)

Xn is a wide sense stationary random sequence if and only if for all n

E[Xn] = µX

RX [n, k] = RX [0, k] = RX [k]

Theorem: For a wide sense stationary process X(t), the autocorrelation function RX(τ) satisfies

RX(0) ≥ 0
RX(τ) = RX(−τ)

|RX(τ)| ≤ RX(0)

Theorem: If Xn is a wide sense stationary random sequence, the autocorrelation function RX [k] satisfies

RX [0] ≥ 0
RX [k] = RX [−k]

|RX [k]| ≤ RX [0]

Average Power: The average power of a wide sense stationary process X(t) is

RX(0) = E[X2(t)]
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10 Random Signal Processing

In this chapter, electrical signals are represented as sample functions of wide sense stationary random
processes. We use this representation to describe the effects of linear filters.

10.1 Linear Filtering of a Random Process

We consider a linear time-invariant filter with impulse response h(t). If the input is a deterministic signal
v(t), the output, w(t), is the convolution,

w(t) =

∫ ∞

−∞
h(u)v(t− u)du

Definition, Fourier Transform: Functions g(t) and G(f) are called a Fourier Transform pair if

G(f) =

∫ ∞

−∞
g(t)e−j2πftdt g(t) =

∫ ∞

−∞
G(f)ej2πftdf

Definition, The Linear Time Invariant Filter Output Process: X(t) is the input to a linear time
invariant filter with impulse response h(t), and Y (t) is the output if all inputs to the filter are sample
functions X(t) and the outputs are sample functions of Y (t). Y (t) is related to the X(t) by the convolution
integral

Y (t) =

∫ ∞

−∞
h(u)X(t− u)du =

∫ ∞

−∞
h(t− u)X(t)du

Theorem: If the input to a linear time invariant filter with impulse response h(t) is a wide sense stationary
process X(t), the output is a wide sense stationary process Y (t) with mean value

µY = µX

∫ ∞

−∞
h(t)dt = µXH(0)

and autocorrelation function

RY (τ) =

∫ ∞

−∞
h(u)

∫ ∞

−∞
h(v)RX(τ + u− v)dvdu

10.2 Power Spectral Density

Definition, Power Spectral Density: For a wide sense stationary random process X(t), the autocorre-
lation RX(τ) and the power spectral density SX(f) are the Fourier transform pair

SX(f) =

∫ ∞

−∞
RX(τ)e−j2πfτdτ RX(τ) =

∫ ∞

−∞
SX(f)ej2πfτdf
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Theorem: For a wide sense stationary random process X(t), the power spectral density SX(f) has the
following properties

(a) E[X2(t)] = RX(0) =

∫ ∞

−∞
SX(f)df

(b) SX(−f) = SX(f)

Theorem: When a wide sense stationary stochastic process X(t) is the input to a linear time invariant
filter with frequency response H(f), the power spectral density of the output Y (t) is

SY (f) = |H(f)|2SX(f)

Example: Suppose that H(f) is a narrow, ideal bandpass filter of bandwidth B centered at frequency f0.
That is,

H(f) =

{
1 |f ± f0| ≤ B/2
0 otherwise

We saw that SY (f) = |H(f)|2SX(f) and the average power of Y (t) satisfies

E[Y 2(t)] =

∫ ∞

−∞
SY (f)df =

∫ −f0+B/2

−f0−B/2
SX(f)df +

∫ f0+B/2

f0−B/2
SX(f)df

Since SX(f) = SX(−f), when B is very small, we have

E[Y 2(t)] ≈ 2BSX(f0)

Thus we see that SX(f0) characterize the power per unit frequency of X(t) at frequencies near f0.
Theorem: For a wide sense stationary stochastic process X(t), the power spectral density SX(f) ≥ 0 for
all f .

10.3 Cross Correlations

Definition, Independent Processes: Stochastic processes X(t) and Y (t) are independent if for any
collection of time samples, t1, . . . , tn and t′1, . . . , t

′
m,

fX(t1),...,X(tn),Y (t′1),...,Y (t′m)(x1, . . . , xn, y1, . . . , ym)

= fX(t1),...,X(tn)(x1, . . . , xn)fY (t′1),...,Y (t′m)(y1, . . . , ym)

Definition, Cross Correlation Function: The cross correlation of random processes X(t) and Y (t) is

RXY (t, τ) = E[X(t)Y (t+ τ)]

Definition, Jointly Wide sense Stationary Processes: The random processesX(t) and Y (t) are jointly
wide sense stationary if X(t) and Y (t) are each wide sense stationary, and the cross correlation satisfies

RXY (t, t+ τ) = RXY (τ)

Theorem: If X(t) and Y (t) are jointly wide sense stationary, then

RXY (τ) = RY X(−τ)

Definition, Cross Spectral Density: For jointly wide sense stationary random processes X(t) and Y (t),
the Fourier transform of the cross correlation yields the cross spectral density

SXY (f) =

∫ ∞

−∞
RXY (τ)e

−j2πfτdτ
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Theorem: When a wide sense stationary process X(t) is the input to a linear time invariant filter h(t),
the input-output cross correlation is

RXY (t, t+ τ) = RXY (τ) =

∫ ∞

−∞
h(u)RX(τ − u)du

Theorem: When a wide sense stationary process X(t) is the input to a linear time invariant filter, the
input X(t) and the output Y (t) are jointly wide sense stationary.

Theorem: When a wide sense stationary process X(t) is the input to a linear time invariant filter h(t),
the autocorrelation of the output Y (t) is

RY (τ) =

∫ ∞

−∞
h(−w)RXY (τ − w)dw
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Theorem: Let X(t) be a wide sense stationary input to a linear time invariant filter H(f). The input
X(t) and output Y (t) satisfy

SXY (f) = H(f)SX(f) SY (f) = H∗(f)SXY (f)

10.4 Gaussian Processes

Definition, Gaussian Process: X(t) is a Gaussian random process if the joint PDF of X(t1), . . . , X(tk)
has the multivariate Gaussian density

fX(t1),...,X(tk) =
1

(2π)k/2|C|1/2
e−

1
2
(x−µX)TC−1

(x−µX)

Theorem: If X(t) is a wide sense stationary Gaussian process, then X(t) is a stationary Gaussian process.

Theorem: X(t) is a Gaussian random process if Y =

∫ T

0
g(t)X(t)dt is a Gaussian random variable for

every g(t) such that E[Y 2] < ∞.
Theorem: Passing a stationary Gaussian process X(t) through a linear filter h(t) yields as the output a
Gaussian random process Y (t) with mean as

µY = µX

∫ ∞

−∞
h(t)dt = µXH(0)

and autocorrelation function

RY (τ) =

∫ ∞

−∞
h(u)

∫ ∞

−∞
h(v)RX(τ + u− v)dvdu
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10.5 White Gaussian Noise Processes

In electrical engineering, Gaussian processes appear as models of noise voltages in resistors and models of
receiver noise in communication systems. Noise is an unpredictable waveform that we model as a stationary
Gaussian random process W (t). Noise has no DC component, so that

E[W (t1)] = µW = 0

We assume that for any collection of distinct time instants t1, . . . , tk,W (t1), . . . ,W (tk) is a set of indepen-
dent random variables. So, for τ ̸= 0,

RW (τ) = E[W (t)W (t+ τ)] = E[W (t)]E[W (t+ τ)] = 0

On the other hand with these assumptions,

SW (f) =

∫ ∞

−∞
RW (τ)e−j2πfτdτ

is a constant for all f . The constant is 0 unless RW (τ) = N0
2 δ(τ). Therefore N0 is the power per unit

bandwidth of the white Gaussian noise stochastic process. This model does not conform to any signal that
can be observed physically. Note that the average noise power is

E[W 2(t)] = RW (0) =

∫ ∞

−∞

N0

2
df = ∞

Passing the white noise process through a filter h(t) yields a noise process

Y (t) =

∫ t

0
h(t− τ)W (τ)dτ

Unlike the white process W (t), the noise process Y (t) does have finite average power.
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11 Renewal Processes and Markov Chains

11.1 Continuous Time Markov Chains

Definition, Continuous Time Markov Chain: A continuous time Markov chain {X(t)|t ≥ 0} is a
continuous time, discrete value random process such that for an infinitesimal time step of size ∆,

P [X(t+∆) = j|X(t) = i] = qij∆

P [X(t+∆) = i|X(t) = i] = 1−
∑
j ̸=i

qij∆

Note that the above model assumes that only a single transition can occur in the small time ∆. The
continuous time Markov chain is closely related to the Poisson process.

11.2 Birth-Death Processes and Queueing Systems

Definition, Birth-Death Process: A continuous time Markov chain is a birth-death process if the tran-
sition rates satisfy qij = 0 for |i− j| > 1.
Birth-Death processes earn their name because the state can represent the number in population. A
transition from i to i+ 1 is a birth since the population increases by one. A transition from i to i− 1 is a
death in the population.
Queueing systems are often modelled as birth-death process in which the population consists of the cus-
tomers in the system. For a Markov chain that represent a queue, we make use of some new terminology
and notation. Specifically, the transition rate qi,i−1 is denoted by µi and is called the service rate in state
i since the transition from i to i − 1 occurs only if a customer completes service and leaves the system.
Similarly, λi = qi,i+1 is called the arrival rate in state i since a transition from state i to state i + 1
corresponds to the arrival of a customer.
Theorem: For a birth-death queue with arrivals rates λi and service rates µi, the stationary probabilities
pi satisfy

pi−1λi−1 = piµi

∞∑
i=0

pi = 1
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Theorem: For a birth-death queue with arrivals rates λi and service rates µi, let ρi = λi/µi+1. The
limiting state probabilities, if they exist, are

pi =

i−1∏
j=1

ρj

1 +
∞∑
k=1

k−1∏
j=1

ρj


