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Abstract

This paper considers the setup of a parallel MIMO relay network in which K relays, each equipped

with N antennas, assist the transmitter and the receiver, each equipped withM antennas, in the half-

duplex mode, under the assumption thatN ≥ M . This setup has been studied in the literature like in

[1], [2], and [3]. In this paper, a simple scheme, the so-called Incremental Cooperative Beamforming, is

introduced and shown to achieve the capacity of the network in the asymptotic case ofK → ∞ with a

gap no more thanO
(

1
log(K)

)

. This result is shown to hold, as long as the power of the relays scales as

ω

(
log9(K)

K

)

. Finally, the asymptotic SNR behavior is studied and it is proved that the proposed scheme

achieves the full multiplexing gain, regardless of the number of relays.

I. INTRODUCTION

A. Motivation

In recent years, Multiple-input Multiple-output (MIMO) wireless systems have received signif-

icant attention. It has been shown that MIMO wireless systems have the ability to simultaneously

enhance the multiplexing gain (degrees of freedom) and the diversity (reliability) of the Rayleigh

fading channel [4], [5], [6]. The relay channel, which was first introduced by Van-der Meulen in

1971 [7], has been reconsidered in recent years to improve the coverage, reliability, and reduce

the interference in the multi-user wireless networks. The main idea is to employ some extra
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nodes in the network to aid the transmitter/receiver in sending/receiving the signal to/from the

other end. In this way, the supplementary nodes act as (spatially) distributed antennas assisting

the signal transmission and reception.

After some recent information-theoretic results on the MIMO point-to-point Rayleigh fading

channels [4], [5], [6], there has been growing interest in studying the impact of MIMO systems

in more complex wireless networks. Some promising results have been published on MIMO

Multiple-Access and Broadcast channels in [8], [9], [10], [11], and [12]. However, there are still

only a few results known concerning the MIMO relay networks.Moreover, no capacity-achieving

strategy is known for the Gaussian relay channel.

This paper analyzes the performance of a parallel MIMO relaynetwork. Our focus is on the

Amplify and Forward (AF) strategy. Not only the AF strategy offers low complexity and delay,

but also it performs well in our setup.

B. History

The classical relay channel was first introduced by Van-der Meulen in 1971 [7]. In [7], a node

defined as the relay enhances the transmission of information between the transmitter and the

receiver. The most important relevant results have been published by Cover and El Gamal [13].

In [13], two different coding strategies are introduced. Inthe first strategy, originally named

“cooperation”, and later known as “decode-and-forward” (DF), the relay decodes the transmitted

message and cooperates with the transmitter to send the message in the next block. In the

second strategy, known as “compress-and-forward” (CF), the relay compresses the received signal

and sends it to the receiver. The performance of the DF strategy is limited by the quality of

the transmitter-to-relay channel, while CF’s performanceis mostly restricted by the quality of

the relay-to-receiver channel [13]. The drawback of using CF strategy is that it employs no

cooperation between the transmitter and the relay at the receiver side. Hence, the CF strategy

is unable to exploit the power boosting advantage due to the coherent addition of the signal of

the transmitter and the relay [13].

More recently, several extensions of the relay channel havebeen considered, e.g. in [14]–[17].

Some of these extensions consider a multiple-relay scenario in which several nodes relay the

message. The parallel relay channel is a special case of the multiple relay channel in which the

relays transmit their data directly to the receiver. Besides studying the well-known “compress-
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and-forward” and “decode-and-forward” strategies, the authors in [14], [15] have also studied

the “amplify-and-forward” strategy where the relays simply amplify and transmit their received

data to the receiver. Despite its simplicity, the AF strategy achieves a good performance. In fact,

[14] shows that AF outperforms other strategies in many scenarios. Moreover, [15] proves that

AF achieves the capacity of the Gaussian (single antenna) parallel relay network as the number

of relays increases.

References [1], [2] extend the work of [15] to the MIMO Rayleigh fading parallel relay

network. Unlike the single antenna parallel relay scenario, in this case the AF multipliers are

matrices rather than scalars. Hence, finding the optimum AF matrices becomes challenging.

Reference [1] has proposed a coherent AF scheme, called “matched filtering”, and proves that

this scheme follows the capacity of the channel with a constant gap in terms of the number

of relays in the asymptotic case ofK → ∞. They also show that the achievable rate of AF

in parallel MIMO relay network grows linearly with the number of antennas (reflecting the

multiplexing gain) and grows logarithmically in terms of the number of relays (reflecting the

distributed array gain [1]).

Reference [3] presents a new AF scheme using the QR decomposition of the forward and

backward channels in each relay that outperforms the other AF schemes for practical number

of relays.

C. Contributions and Relation to Previous Works

In this paper, we consider the AF strategy in the parallel MIMO relay network. The channel

is assumed to be Rayleigh fading and the communication takesplace in the half-duplex mode

(i.e. the relays can not transmit and receive simultaneously). We propose a new AF protocol

called “Cooperative Beamforming Scheme” (CBS). Considering the uplink channel (from the

transmitter to the relays) as a point-to-point channel, in CBS the relays cooperatively multiply

the channel matrix with its left eigenvector matrix. Hence,the relays act like the spatially

distributed antennas at the equivalent receiver. The interesting point is that to perform such

an operation, each relay only needs to know its corresponding sub-matrix of the beamforming

matrix. For the outputs to be coherently added at the receiver end, each relay has to apply zero

forcing beamforming to its corresponding downlink channel(the channel from each relay to

the receiver). Here, the interesting result is that the overall channel from the transmitter to the
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receiver becomes diagonal and the overall Gaussian noise has independent components.

We show that the proposed scheme is optimum in the case of having negligible noise in the

downlink channel. However, the downlink noise would degrade the system performance when

one of the relays’ downlink channels is ill-conditioned. Toenhance the performance of CBS

in general scenarios, this work introduces a variant of CBS called “Incremental Cooperative

Beamforming Scheme” (ICBS). In ICBS, the relays with ill-conditioned downlink channels are

turned off. This strategy improves the overall point-to-point channel from the transmitter to the

receiver. However, an interference term due to turning someof the relays off will be included

in the equivalent point-to-point channel.

It is shown that for asymptotically large number of relays, one can simultaneously mitigate the

downlink noise and the interference term due to the turned-off relays. As a result, the achievable

rate of ICBS converges to the capacity of parallel MIMO relaynetwork with a gap which scales

as O
(

1
log(K)

)

. This result is stronger than the result of [1] and [2] in which they show that

their scheme can asymptotically (K → ∞) achieve the capacity up toO(1). Also, our numerical

results show that the achievable rate of ICBS converges rapidly to the capacity, even for moderate

number of relays. Our results also demonstrate that the achievable rate of ICBS, the maximum

achievable rate of amplify and forward strategy, the capacity of the parallel MIMO relay network,

and the point-to-point capacity of the uplink channel converge to each other for asymptotically

large number of relays.

We also show that the same result can be achieved by ICBS, as long as the power of the

relays scales asω
(

P
K

log9 (K)
)

1. Finally, by analyzing the asymptotic SNR behavior of the

proposed scheme, it is proved that, unlike the matched filtering scheme of Bcskei-Nabar-Oyman-

Paulraj (BNOP) which results in a zero multiplexing gain, our proposed scheme achieves the

full multiplexing gain, regardless of the number of relays.

The rest of the paper is organized as follows. In section II, the system model is introduced.

In section III, the proposed AF scheme is described. SectionIV is dedicated to the asymptotic

analysis of the proposed scheme. Simulation results are presented in section V. Finally, section

VI concludes the paper.

1f(n) = ω(g(n)) is equivalent tolimn→∞
f(n)
g(n)

= ∞
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D. Notation

Throughout the paper, the superscriptsT ,H and∗ stand for matrix operations of transposition,

conjugate transposition, and element-wise conjugation, respectively. Capital bold letters represent

matrices, while lowercase bold letters and regular lettersrepresent vectors and scalars, respec-

tively. ‖v‖ denotes the norm of the vectorv while ‖A‖ represents the frobenius norm of the

matrix A. |A| denotes the determinant of the matrixA while ‖A‖⋆ represents the maximum

absolute value among the entries ofA. The notationA† stands for the pseudo inverse of the

matrix A. The notationA 4 B is equivalent toB−A is a positive semi-definite matrix. For any

functionsf(n) andg(n), f(n) = O(g(n)) is equivalent tolimn→∞

∣
∣
∣
f(n)
g(n)

∣
∣
∣ < ∞, f(n) = o(g(n)) is

equivalent tolimn→∞

∣
∣
∣
f(n)
g(n)

∣
∣
∣ = 0, f(n) = Ω(g(n)) is equivalent tolimn→∞

f(n)
g(n)

> 0, f(n) & g(n)

is equivalent tolimn→∞
f(n)
g(n)

≥ 1, f(n) = ω(g(n)) is equivalent tolimn→∞
f(n)
g(n)

= ∞, f(n) ∼
g(n) is equivalent tolimn→∞

f(n)
g(n)

= 1 and f(n) = Θ(g(n)) is equivalent tolimn→∞
f(n)
g(n)

= c,

where0 < c < ∞.

II. SYSTEM MODEL

The system model, as in [1], [2], and [3], is a parallel MIMO relay network with two-hop

relaying and half-dulplexing between the uplink and downlink channels. In other words, the data

transmission is performed in two time slots; in the first timeslot, the signal is transmitted from

the transmitter to the relays, and in the second time slot, the relays transmit data to the receiver.

Note that there is no direct link between the transmitter andthe receiver in this model. The

transmitter and the receiver are equipped withM antennas and each of the relays is equipped

with N antennas. Throughout the paper, we assume thatN ≥ M . The channel between the

transmitter and the relays and the channel between the relays and the receiver are assumed

to be frequency flat block Rayleigh fading. The channel from the transmitter to thekth relay,

1 ≤ k ≤ K, is modeled as

rk = Hkx + nk, (1)

and the downlink channel is modeled as

y =

K∑

k=1

Gktk + z, (2)

where the channel matricesHk and Gk are i.i.d. complex Gaussian matrices with zero mean

and unit variance.nk ∼ CN (0, IN) and z ∼ CN (0, IM) are Additive White Gaussian Noise
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(AWGN) vectors,rk andtk are thekth relay’s received and transmitted signal, respectively,and

x andy are the transmitter’s and the receiver’s signal, respectively. Hk andGk are of the sizes

N×M andM×N , respectively (figure 1).

The task of amplify and forward (AF) relaying is to find the matrix Fk for each relay to be

multiplied by its received signal to produce the relay’s output astk = Fkrk. In this way, the

entire source-destination channel is modeled as

y =

(
K∑

k=1

GkFkHk

)

x +
K∑

k=1

GkFknk + z. (3)

In addition, the power constraintsE[xHx] ≤ Ps and Ex,nk
[tH

k tk] ≤ Pr must be satisfied for

the transmitted signals of the transmitter and the relays, respectively. We assumePr = Ps = P

throughout the paper, except in Theorem 2, where we study thecasePr < Ps = P .
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Relays with N received/transmitted antennas

First Hop

Rx

Rk+1

Rk

Tx

M
antennas

M
antennas

Hk+1

Hk Gk

Gk+1

Fig. 1. A schematics of a parallel MIMO half-duplexing relaynetwork

III. PROPOSEDMETHOD

A. Cooperative Beamforming Scheme

The equivalent uplink channel can be represented asHT =
[
HT

1 |HT
2 |· · ·|HT

K

]T
. By applying

Singular Value Decomposition (SVD) toH, we haveH = UΛ
1
2 VH. Therefore, the diagonal

matrix Λ has at mostM nonzero diagonal entries corresponding to the nonzero singular values
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of H. Consequently, we can rearrange the SVD such thatU is of sizeNK ×M while V andΛ

areM ×M matrices.U can be partitioned toM ×N sub-matrices asU =
[
UT

1 |UT
2 |· · ·|UT

K

]T
.

Suppose thekth relay multiplies its received signal byUH
k , then passes it through the zero-forcing

matrix G
†
k, and finally amplifies it with a constant scalarα independent ofk; equivalently, we

haveFk = αG
†
kU

H
k . At the receiver side, we have (figure 2)

y = α

K∑

k=1

Gktk + z

= α

K∑

k=1

GkG
†
kU

H
k rk + z

= αUHr + z

= αUH (Hx + n) + z

= α
(

Λ
1
2 VHx + nu

)

+ z, (4)

where n =
[
nT

1 |nT
2 |· · ·|nT

K

]T
, r =

[
rT
1 |rT

2 |· · ·|rT
K

]T
, and nu = UHn ∼ CN (0, IM). If the

transmitter beamforms its data vector asx = Vx′, the end-to-end channel becomes

y = α
(

Λ
1
2 x′ + nu

)

+ z. (5)

Equation (5) shows that the end-to-end channel is diagonal and the noise vector is white

Gaussian. Note that the complexity of the decoder in such a channel is linear in terms of the

number of transmitter’s antennas,M , and also there is no interference among different data

streams. In fact, the output signals of the relays not only donot interfere with each other, but

also add constructively at the receiver side. Moreover, as it is shown in section IV, forα → ∞,

the achievable rate of such a scheme converges to the point-to-point capacity of the uplink

channel which is shown to be an upper-bound on the capacity ofthe parallel relay system.

The problem is that the value ofα is dominated by

α =

√
√
√
√
√

P

maxk Ex,nk

[∥
∥
∥G

†
kU

H
k rk

∥
∥
∥

2
] . (6)

This guarantees that the output power of all relays is less than or equal toP . However, by

applying (6), the value ofα could be small in the cases where the downlink channel of any of the

relays is ill conditioned. This means that while the output power of the worst relay (according

DRAFT



9

HK

Tx
Rx

R1

G1

y = α
(

Λ
1

2x′ + nu

)

+ z

GK

RKH =



















H1

H2
...
HK



















tk = αG
†
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Fig. 2. Cooperative Beamforming Scheme

to (6)) is equal to the maximum possible value, i.e.P , there may be many relays with the output

power far less thanP . This phenomenon degrades the performance, as in this case the downlink

noise,z, would be the dominant noise in (5).

B. Incremental Cooperative Beamforming Scheme (ICBS)

As the number of relays increases, we expect (as shown in (6))to have smaller values of

α with high probability. In other words, there is a higher chance of having at least one ill-

conditioned downlink channel among the relays. In this case, we can select a subset of relays

which are in good condition and turn off the rest. In this variant of CBS, we select a subset of

relays which results in a high value ofα. Defining βk , Ex,nk

[∥
∥
∥G

†
kU

H
k rk

∥
∥
∥

2
]

, we activate the

relays which satisfyβk ≤ β, whereβ is a predefined threshold. In this manner, it is guaranteed

thatα ≥
√

P
β

. This improvement in the value ofα is realized at the expense of turning off some

of the relays, creating interference in the equivalent point-to-point channel. More precisely, by

definingA = {k|βk > β}, we have (figure 3)

y = α

((

Λ
1
2 −

∑

k∈A
UH

k HkV

)

x′ +
∑

k∈Ac

UH
k nk

)

+ z. (7)

As (7) shows, by decreasing the value ofβ, one can guarantee a large value ofα while increasing

the gap of the equivalent channel matrix toΛ
1
2 . It will be shown in the next section that for
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†
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H
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+UH
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3 n3 + · · ·
]

+ z

y = α







Λ
1
2 −

︷ ︸︸ ︷

UH
2 H2V− · · ·



x′+

interference due to relay 2

Fig. 3. Incremental Cooperative Beamforming Scheme

large number of relays, it is possible to guarantee both having a large value ofα and a small

deviation fromΛ
1
2 . Moreover, we show that by appropriately choosing the valueof β, the rate

of such a scheme would be at mostO
(

1
log(K)

)

below the corresponding capacity.

C. A Note on CSI Assumption

In the BNOP scheme, it is assumed that each relay knows its corresponding forward and

backward channels, i.e.Hk and Gk, and at the receiver side, the effective signal power and

the effective interference plus noise power are known for each antenna. However, in CBS and

ICBS, it is assumed that the transmitter knows the uplink channel, i.e.H1, · · · ,HK , and sends

theN ×M matrix Uk to thek’th relay, k = 1, · · · , K. This assumption is reasonable when the

uplink channel is slow-fading; for example, in the case thatthe transmitter and all the relay nodes

are fixed. Furthermore, similar to the BNOP scheme, we assumethat each relay knows its forward

channel, i.e.Gk. In addition, in CBS, it is assumed that the value ofα is set by negotiating

between the relays through sending their correspondingβk to the transmitter. This assumption is

not required in ICBS, as the value ofα can be set asα =
√

P
β

, whereβ is a predefined threshold.

Finally, in both CBS and ICBS, it is assumed that the receiverhas the perfect knowledge about

the equivalent point-to-point channel from the transmitter to the receiver. This information can
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be obtained through sending pilot signals by the transmitter, amplified and forwarded at the relay

nodes in the same manner as the information signal. In CBS, asthe equivalent point-to-point

channel is diagonal, this assumption is equivalent to knowing the equivalent signal to noise ratio

at each antenna.

IV. A SYMPTOTIC ANALYSIS

In this section, we consider the asymptotic behavior (K → ∞) of the achievable rate of

ICBS. We show that by properly choosing the value ofβ, the achievable rate of ICBS converges

rapidly to the capacity (the difference approaches zero asO
(

1
log(K)

)

). The sequence of proof is

as follows. In Lemma 1, we relateP [v > ξ] (the probability that the norm of interference term

defined in equation (7) exceeds a certain threshold) toP[k ∈ A] (the probability of turning off

a relay) andP[‖Uk‖2 > γ] (the probability of having a sub-matrix with a large norm in the

unitary matrix obtained from the SVD ofH). In Lemma 2, we boundP[‖Uk‖2 > γ]. In Lemma

3, we boundP[k ∈ A]. As a result, in Lemma 4, we show that by properly choosing thevalue

of β, with high probability, one can simultaneously reduce the effect of the interference too(K)

and maintain a large value ofα. In Lemma 5, we show that with high probability, the minimum

singular value ofH scales asO(K). Putting Lemmas 4 and 5 together, with high probability, the

ratio of the power of interference to the power of signal approaches zero. Finally, in Theorem 1,

we prove the main result by showing that the achievable rate of ICBS converges to the capacity

of the uplink channel. This is proved using the fact that the capacity of the uplink channel is

an upper-bound on the capacity of parallel MIMO relay network. As a consequence stated in

corollary 1, the achievable rate of ICBS, the achievable rate of the AF protocol, the point-to-

point capacity of the uplink channel, and the capacity of theparallel MIMO relay network are

asymptotically equal. As another consequence, the difference of the rates scales asO( 1
log(K)

).

Using the proof of Lemma 4 and Theorem 1, Theorem 2 shows that as long as the power

of relays behaves asPr(K) = ω
(

P
K

log9 (K)
)
, the same rate is achievable by ICBS. Finally, in

Theorem 3, we study the asymptotic SNR behavior of CBS and ICBS, and show that, unlike

the matched filtering scheme of BNOP, CBS and its variant achieve the full multiplexing gain,

regardless of the number of relays.

DRAFT



12

Lemma 1 Consider a parallel MIMO relay network withK relays using ICBS. We have

P [v > ξ] ≤ MNK2

ξ
(P[Bk] + γP[Ak]) , (8)

wherev is defined asv =
∥
∥
∑

k∈A UH
k Hk

∥
∥2

, andAk and Bk are indicator variables defined as

Ak ≡ (k ∈ A) and Bk ≡ (‖Uk‖2 > γ), respectively.

Proof: Let us defineUA =
[
UT

k |k ∈ A
]T

andHA =
[
HT

k |k ∈ A
]T

. We have

P [v > ξ] = P
[
‖UH

AHA‖2 > ξ
]

(a)

≤ E
[
‖UH

AHA‖2
]

ξ

(b)

≤ E [‖UA‖2‖HA‖2]

ξ

(c)

≤ E [‖UA‖2‖H‖2]

ξ

(d)
=

E [‖UA‖2] E [‖H‖2]

ξ

=
MNKE [‖UA‖2]

ξ
(9)

Here, Markov inequality is applied to derive inequality(a). (b) is obtained by applying the norm

product inequality on matrices2. (c) results from the fact that‖HA‖2 ≤ ‖H‖2. Finally, equation

(d) follows from the fact that the left unitary matrix, i.e.U, resulted from the SVD of an i.i.d.

complex Gaussian matrix, is independent of its singular value matrix, i.e.Λ
1
2 , [19], and the fact

that ‖H‖2 is a function ofΛ.

2AssumingA andB two matrices of sizesm × n andn × k, correspondingly, we have‖AB‖2 ≤ ‖A‖2‖B‖2 [18] .
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To upper-boundE [‖UA‖2], we have

E
[
‖UA‖2

]
= E

[
K∑

k=1

Ak‖Uk‖2

]

(a)
= KE

[
Ak‖Uk‖2

]

= KE
[
‖Uk‖2|Ak

]
P[Ak]

= KE
[
‖Uk‖2|Ak, Bk

]
P[Ak, Bk]

+ KE
[
‖Uk‖2|Ak, B

c
k

]
P[Ak, B

c
k]

(b)

≤ K (P[Ak, Bk] + γP[Ak, B
c
k])

(c)

≤ K (P[Bk] + γP[Ak]) , (10)

where(a) follows from the fact the channels are symmetric,(b) follows from the fact that the

norm ofUk is upper-bounded by 1 and conditioned on the eventBc
k, it is upper-bounded byγ,

and finally (c) follows from the basic probability inequalities. Combining inequalities (9) and

(10) completes the proof.

Lemma 2 Consider aKN × M Unitary matrix U, where its columnsUi, i = 1, · · · , M , are

isotropically distributed unit vectors inCNK×1. Let W be an arbitraryN × M sub-matrix of

U. Then, for a predefined value ofM and N and assumingγ = ω
(

1
K

)
, asK → ∞, we have

P
[
‖W‖2 ≥ γ

]
= O

(

(Kγ)(N−1)
e−

γ
M

NK
)

(11)

Proof: See Appendix A.

Lemma 3 For a small enough value ofδ, we have

P[Ak] ≤ P[Bk] + c1

√
δ + c2e

− d√
δ , (12)

whereδ = γ
β
, and c1, c2 and d are positive constant parameters independent ofK, β, andγ.

Proof: Assumek’th relay is off. Hence, we have

β < Ex,nk

[∥
∥
∥G

†
kU

H
k rk

∥
∥
∥

2
]

(a)

≤ λ−1
min(Gk)‖Uk‖2

(
1 + P‖Hk‖2

)
. (13)
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Here,(a) follows from the product norm inequality of matrices and independency of the noise

from other random variables in the system. Defining the events

Ck ≡
(

λmin(Gk) <
‖Uk‖2

β
(1 + P‖Hk‖2)

)

, (14)

Dk ≡
(
λmin(Gk) < δ

(
1 + P‖Hk‖2

))
, (15)

we have

P[Ak]
(a)

≤ P[Ck]

= P[Ck ∩ Bk] + P[Ck ∩ Bc
k]

(b)

≤ P[Bk] + P[Ck|Bc
k]P[Bc

k]

(c)

≤ P[Bk] + P[Dk|Bc
k]P[Bc

k]

(d)

≤ P[Bk] + P[Dk], (16)

where(a) results from (13),(b) and(d) follow from basic probability inequalities and(c) follows

from the fact that conditioned on‖Uk‖2 ≤ γ, we have‖Uk‖2

β
(1 + P‖Hk‖2) < δ (1 + P‖Hk‖2),

which incurs thatCk ⊆ Dk. DefiningWk as the submatrix defined on the firstM rows of Gk,

we have

P[Dk] ≤ P

[(

λmin(Gk) ≤
√

δ
)⋃

(

1 + P‖Hk‖2 ≥ 1√
δ

)]

(a)

≤ P

[

λmin(Gk) ≤
√

δ
]

+ P

[

1 + P‖Hk‖2 ≥ 1√
δ

]

(b)

≤ P

[

λmin(Wk) ≤
√

δ
]

+ P

[

1 + P‖Hk‖2 ≥ 1√
δ

]

(c)
=

∫ √
δ

x=0

Me−Mxdx +
1

Γ(MN)

∫ ∞

x= 1
P

(
1√
δ
−1
) xMN−1e−xdx

≤ M
√

δ +

[
MN−1∑

m=0

xme−x

m!

]

x= 1
P

(
1√
δ
−1
)

(d)

≤ M
√

δ + MNe
− 1

2P

(
1√
δ
−1
)

= M
√

δ + MNe
1

2P e
− 1

2P
√

δ (17)

Here, (a) results from the union bound,(b) results from the fact thatλmin (Gk) ≥ λmin (Wk)

which can be shown easily based on the definition of the singular values of a matrix,(c)
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results from applying the probability density function of the minimum singular value of square

i.i.d. complex Gaussian matrix, derived in [20], and also the fact that‖Hk‖2 has Chi-Square

distribution with 2MN degrees of freedom, and finally,(d) results from the assumption that

δ is small enough such that∀m, 0 ≤ m < MN , we have
(

1
P
( 1√

δ
− 1)

)m

< e
1

2P

(
1√
δ
−1
)

. By

Combining the results of (16) and (17), we obtain (12) and this completes the proof.

Next, we apply Lemmas 1, 2, and 3 to prove that for large valuesof K, by properly choosing

the value ofβ, ICBS can simultaneously achieve a large value ofα and reduce the interference

to o(K), with a high probability.

Lemma 4 By assigningβ = 1
log(K)

and γ = 2 log(K)
K

, ICBS simultaneously achieves

α = Ω
(√

log(K)
)

, (18)

P

[

v >
K

log2(K)

]

= O

(
log4 (K)√

K

)

, (19)

wherev is defined in Lemma 1.

Proof: Having β = 1
log(K)

, the value ofα would be

α =

√

P

maxk∈Ac βk

≥
√

P

β
= Ω

(√

log(K)
)

, (20)

and this results in (18). Assumingξ = K
log2(K)

, we have

P [v > ξ]
(a)

≤ MNK log2(K)

(

P[Bk] +
2 log(K)

K
P[Ak]

)

(b)

≤ MNK log2(K)



P[Bk] +
2 log(K)

K



P[Bk] + c1

√

2
log2(K)

K
+

c2e
−d
√

K

2 log2(K)

)]

(21)

(c)

≤ 2MNK log2(K)P[Bk] + 2MN
√

2c1
log4(K)√

K
+ 2MNc2

log3(K)

K

= 2MNK log2(K)P[Bk] + O

(
log4(K)√

K

)

(d)
= 2MNK log2(K)O

(

(log(K))(N−1)
e−

2N
M

log(K)
)

+ O

(
log4(K)√

K

)

(e)
= O

(
log4(K)√

K

)

. (22)
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Here, (a) follows from Lemma 1,(b) follows from Lemma 3,(c) follows the assumption that

K is large enough such that2 log(K) < K andd
√

2
√

K
log(K)

≥ log(K) , (d) follows from Lemma

2, and(e) follows from the fact that2N
M

≥ 2, which incurs that

K log2(K)O
(

(log(K))(N−1)
e−

2N
M

log(K)
)

∼ O

(
logN+1(K)

K

)

∼ o

(
log4(K)√

K

)

.

This completes the proof of Lemma 4.

Although with the threshold value stated by Lemma 4, the interference term may tend to infinity

in terms ofK, the signal term tends to infinity more rapidly. In fact, as the following Lemma

shows, the singular values of the whole uplink channel matrix behave asO(K) with probability

1, asK → ∞.

Lemma 5 Let A be anr×s matrix whose entries are i.i.d complex Gaussian random variables

with zero mean and unit variance. Assume thatr is fixed ands tends to infinity. Then, with

probability oneλmin(A) ∼ s, or more precisely,

P

[

λmin(A) ∼ s

(

1 + O

(

4

√

log(s)

s

))]

& 1 − O

(

1

s
√

log (s)

)

, (23)

whereλmin(A) denotes the minimum singular value ofAAH .

Proof: See Appendix B.

Next, we prove the main theorem of this section.

Theorem 1 By setting the threshold asβ = 1
log(K)

, the achievable rate of the proposed ICBS

converges to the upper-bound capacity defined for the uplinkchannel. More precisely,

lim
K→∞

Cu(K) − RICBS(K) = 0, (24)

whereCu(K) = 1
2
EH

[
maxQ,Tr{Q}≤P log

(∣
∣IKN + HQHH

∣
∣
)]

is the point to point ergodic ca-

pacity of the uplink channel andRICBS(K) is the achievable rate of ICBS.

Proof: By applying the cut-set bound theorem [21] on the broadcast uplink channel, it can

be easily verified [1], [2] that the point-to-point capacityof the uplink channel,Cu(K), is an

upper-bound on the capacity of the parallel MIMO relay network. Note that the factor1
2

in the

expression ofCu(K) is due to the half-duplex relaying. DefineCu⋆(K) = M
2

log
(
1 + KNP

M

)
.
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We first show thatCu⋆(K) is an upper-bound forCu(K), and then prove that a lower-bound for

RICBS(K) converges toCu⋆(K).

Cu(K) =
1

2
EH




 max

Q

Tr{Q}≤P

log
(∣
∣IKN + HQHH

∣
∣
)






(a)
=

1

2
EH




 max

Q

Tr{Q}≤P

log
(∣
∣IM + HHHQ

∣
∣
)






(b)

≤ 1

2
EH




 max

Q

Tr{Q}≤P

M log

(

1 +
Tr
{
HHHQ

}

M

)





(c)

≤ M

2
EH




 max

Q

Tr{Q}≤P

log

(

1 +
Tr
{
HHH

}
Tr {Q}

M

)





(d)

≤ M

2
log

(

1 +
P

M
EH

[
Tr
{
HHH

}]
)

= Cu⋆(K). (25)

Here,(a) follows from the matrix determinant equality3 , (b) results from the fact that for any

positive semidefinite matrixA, we have|A| ≤
(

Tr{A}
M

)M

, (c) follows from the generalization

of the Cauchy-Schwarz inequality to the positive semidefinite matrices4, and (d) follows from

the concavity of the logarithm function. Rephrasing (7), wehave

y = αH⋆x′ + n⋆, (26)

where

H⋆ = Λ
1
2 −

∑

k∈A
UH

k HkV, (27)

n⋆ = α
∑

k∈Ac

UH
k nk + z ∼ CN (0,Pn⋆) , (28)

3AssumingA andB to beM × N andN × M matrices respectively, we have|IM + AB| = |IN + BA| [18].

4AssumingA andB to be positive semidefinite matrices respectively, we have Tr {AB} ≤ Tr {A}Tr {B} [22].

DRAFT



18

wherePn⋆ = α2
(∑

k∈Ac UH
k Uk

)
+ IM . The achievable rate of such a system is

RICBS(K) =
1

2
EH

[

log

(∣
∣
∣
∣
IM + α2 P

M
H⋆H⋆HP−1

n⋆

∣
∣
∣
∣

)]

≥ 1

2
EH

[

log

(∣
∣
∣
∣
α2 P

M
H⋆H⋆HP−1

n⋆

∣
∣
∣
∣

)]

(a)

≥ 1

2
EH

[

log

(∣
∣
∣
∣

α2

1 + α2

P

M
H⋆H⋆H

∣
∣
∣
∣

)]

=
M

2
log

(
α2

1 + α2

)

+
1

2
EH

[

log

(∣
∣
∣
∣

P

M
H⋆H⋆H

∣
∣
∣
∣

)]

, (29)

where(a) follows from the fact thatPn⋆ = (α2 + 1)IM − α2
(∑

k∈A UH
k Uk

)
which results in

Pn⋆ 4 (α2 + 1)IM , or equivalentlyP−1
n⋆ < 1

α2+1
IM . For convenience, let

RL(K) =
1

2
EH

[

log

(∣
∣
∣
∣

P

M
H⋆H⋆H

∣
∣
∣
∣

)]

.

Sinceα is lower-bounded by the inverse of the threshold asα ≥
√

P
β

, we havelimK→∞
M
2

log
(

α2

1+α2

)

=

0, or equivalently

lim
K→∞

RICBS(K) − RL(K) ≥ 0. (30)

Define the eventsEK and FK as EK ≡
(

λmin (H) & KN

[

1 + O

(

4

√
log K

K

)])

and FK ≡
(∥
∥UH

AHA
∥
∥

2 ≤ K
log2(K)

)

. Consequently, we have

P [EK , FK ]
(a)

≥ 1 − P[Ec
K ] − P[F c

K ]

(b)

& 1 + O

(
1

K
√

log K

)

+ O

(
log4(K)√

K

)

∼ 1 + O

(
log4(K)√

K

)

. (31)

Here,(a) follows from union bound inequality and(b) follows from Lemmas 4 and 5. Assume

the diagonal entries ofΛ are ordered asλ1(H) ≥ λ2(H) ≥ · · · ≥ λM(H). Thus,RL(K) can be

lower bounded as
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RL(K) ≥ 1

2
P [EK , FK ] EH

[

log

(∣
∣
∣
∣

P

M
H⋆H⋆H

∣
∣
∣
∣

) ∣∣
∣
∣
∣
EK , FK

]

= P [EK , FK ] EH

[

log

(∣
∣
∣
∣
∣

√

P

M

(

Λ
1
2 − UH

AHAV
)
∣
∣
∣
∣
∣

) ∣
∣
∣
∣
∣
EK , FK

]

(a)

≥ P [EK , FK ] EH

[

log

((
P

M

)M
2

(
M∏

i=1

λ
1
2
i (H) −

−
M∑

i=1

i!

(
M

i

)
∥
∥UH

AHAV
∥
∥

i

⋆

M−i∏

j=1

λ
1
2
j (H)

)) ∣
∣
∣
∣
∣
EK , FK

]

(b)

≥ P [EK , FK ] EH

[

log

((
P

M

)M
2

M∏

i=1

λ
1
2
i (H) ·

·



1 −
M∑

i=1

i!

(
M

i

)(∥
∥UH

AHA
∥
∥

2

λmin (H)

) i
2









∣
∣
∣
∣
∣
EK , FK





(c)

& P [EK , FK ] EH

[

log

((
P

M

)M
2

M∏

i=1

λ
1
2
i (H) ·

·



1 −
M∑

i=1

i!

(
M

i

)(

N log2(K)

[

1 + O

(

4

√

log K

K

)])−i
2









∣
∣
∣
∣
∣
EK , FK





& P [EK , FK ]

{

M

2
log

(
P

M

)

+
1

2

M∑

i=1

EH

[

log (λi (H))
∣
∣
∣EK , FK

]

−

− M√
N log(K)

(

1 + O

(
1

log(K)

))}

(32)

(d)

& P [EK , FK ]

{

M

2
log

(
P

M

)

+
M

2
log

(

KN

[

1 + O

(

4

√

log K

K

)])

−

− M√
N log(K)

(

1 + O

(
1

log(K)

))}

(33)

(e)

&

{
M

2
log

(
KNP

M

)

+ O

(
1

log(K)

)}

P [EK , FK ]

(f)

&

{
M

2
log

(
KNP

M

)

+ O

(
1

log(K)

)}[

1 + O

(
log4(K)√

K

)]

(g)∼ M

2
log

(
KNP

M

)

+ O

(
1

log(K)

)

. (34)
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Here, (a) follows from an upper-bound on the determinant expansion5 of Λ
1
2 − UH

AHAV,

expanded over all possible set entries betweenΛ andUH
AHAV, (b) follows from the fact that

the Frobenius norm of a matrix is an upper-bound on the squareof the maximum absolute

value among its entries and also∀i : λi(H) ≥ λmin(H), (c) follows from the fact that the

expectation is derived conditioned on the eventsEK and FK , (d) holds due to the fact that

conditioned onEK , we haveλi (H) & KN

[

1 + O

(

4

√
log K

K

)]

, (e) follows from the fact that

log

(

1 + O

(

4

√
log(K)

K

))

∼ O

(

4

√
log(K)

K

)

∼ o
(

1
log2(K)

)

, (f) results from (31), and finally,(g)

follows from the fact thatO
(

log4(K)√
K

)

∼ o
(

1
log(K)

)

. Now, definingRS (K) = M
2

log
(

KNP
M

)
,

according to (30) and (34), we have

lim
K→∞

RICBS(K) − RS(K) ≥ 0. (35)

Furthermore, we have:

lim
K→∞

Cu⋆(K) − RS(K) = 0. (36)

Comparing (25), (35) and (36), and observing the fact thatCu(K) ≥ CICBS(K), results in (24)

and this completes the proof.

Corrolary 1 The capacity of parallel MIMO Relay network, the point-to-point capacity of the

cut-set defined on the uplink channel, the achievable rate ofamplify and forward relaying, and

the achievable rate of ICBS, all converge toM
2

log
(

KNP
M

)
, asK → ∞.

Proof: DefiningC(K), Cu(K), RAF (K), andRICBS(K) as the capacity of parallel MIMO

Relay network, the point-to-point capacity of the cut-set defined on the uplink channel, the

achievable rate of the amplify and forward relaying, and theachievable rate of ICBS, respectively,

it is clear that

RICBS(K)≤RAF (K)≤C(K)≤Cu(K). (37)

Relying on Theorem 1, we know

lim
K→∞

Cu(K) − RS(K) = lim
K→∞

RICBS(K) − RS(K) = 0. (38)

5det (A) =
∑

π (−1)σ(π)
a1π1

a2π2
· · ·anπn

≤
∑

π |a1π1
a2π2

· · ·anπn
|, whereσ is the parity function of permutation.
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By observing thatRAF (K) andC(K) are sandwiched betweenRICBS(K) andCu(K), Sandwich

theorem tells us that

lim
K→∞

RAF (K) − RS(K) = lim
K→∞

C(K) − RS(K) = 0. (39)

Corrolary 2 Achievable rate of ICBS is at mostO
(

1
log(K)

)

below the upper-bound correspond-

ing to the cut-set defined on the point-to-point uplink channel, i.e.Cu(K).

Proof: Following the proof of Theorem 1, we observe

Cu(K) − RICBS(K) ≤ ∆R1 + ∆R2 + ∆R3, (40)

where∆R1 = M
2

log
(
1 + 1

α2

)
results from the approximation of the first term in (29),∆R2 =

O
(

1
log(K)

)

in (34), and finally,∆R3 = M
2

log
(
1 + M

KNP

)
∼ O

(
1
K

)
is the difference be-

tweenCu∗(K) and RS(K). We know thatα ≥
√

P
β

=
√

P log(K), and as a result,∆R1 =

M
2

log
(

1 + 1
P log(K)

)

∼ O
(

1
log(K)

)

. Comparing the values of∆Ri, 1 ≤ i ≤ 3, we conclude that

Cu(K) − RICBS(K) = O
(

1
log(K)

)

.

Apart from increasing the rate, using parallel relays also increases the reliability of the trans-

mission. As the following corollary shows, the probabilityof outage when sending information

at the rateO
(

1
log(K)

)

below the ergodic capacity approaches zero, asK → ∞.

Corrolary 3 Consider the parallel MIMO relay network and ICBS with the threshold value

β = 1
log(K)

. We have

P

[
1

2
log

(∣
∣
∣
∣
IM + α2 P

M
H⋆H⋆HP−1

n⋆

∣
∣
∣
∣

)

. Cu(K) + O

(
1

log (K)

)]

∼ O

(
log4 (K)√

K

)

.

Proof: Following the proof of Theorem 1, we observe this outage event is a subset of

Ec
K

⋃
F c

K , whose probability is shown to beO
(

log4(K)√
K

)

.

Another interesting result is that by increasing the numberof relays, each relay can operate

with a much lower power as compared to the transmitter, whilethe scheme achieves the optimum

rate. This shows another benefit of using many parallel relays in the network.

Theorem 2 Up to the point thatPr(K) = ω
(

P
K

log9 (K)
)
, the achievable rate of ICBS satisfies

lim
K→∞

RICBS(K) − Cu(K) = lim
K→∞

RICBS(K) − M

2
log

(
KNP

M

)

= 0. (41)
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Proof: We use the same steps as the proof of Lemma 4 with the same values of γ and ξ.

Rewriting (21), we have

P[v > ξ] ≤ MNK log2(K)

[

P[Bk] +
2 log(K)

K

(

P[Bk] + c1

√
δ + c2e

− d√
δ

)]

, (42)

whereδ = γ
β
. In order that the second term in (34) (or equivalently∆R2 in (40)) approaches zero,

we must haveP[EK , FK ] ∼ 1+o
(

1
log(K)

)

, which implies thatP[v > ξ] ∼ 1+o
(

1
log(K)

)

. From the

above equation, it follows that havingβ ∼ ω
(

log9(K)
K

)

incurs that
√

δ =
√

γ
β
∼ o

(√
2 log(K)

K

log9(K)
K

)

,

or equivalently,
√

δ log3(K) ∼ o
(

1
log(K)

)

, which results inP[v > ξ] ∼ 1+o
(

1
log(K)

)

. Moreover,

the first term in (29) (or equivalently∆R1 in (40)) approaches zero, ifPr(K) = ω(β) (or

equivalently,α ∼ ω(1)). Therefore, havingPr(K) ∼ ω
(

log9(K)
K

)

, results in∆R1, ∆R2 → 0,

which implies thatlimK→∞ Cu(K) − RICBS(K) = 0.

Theorem 3 The proposed Cooperative Beamforming scheme and its variant achieve the maxi-

mum multiplexing gain of the relay channel. More precisely:

lim
P→∞

RCBS(P )

log(P )
=

M

2
, (43)

and M
2

is the maximum achievable multiplexing gain of the underlying half duplex system. (Here

RCBS(P ) is the achievable rate of the proposed scheme for the given power constraintP .)

Proof: We prove the theorem for CBS. The statements of the proof are also valid for the

variant of CBS. First of all, from the last theorem, we have

Cu(P ) ≤ Cu⋆(P )
(a)

≤ M

2
log

(
2KNP

M

)

=
M

2
log

(
KN

M

)

+
M

2
log(P ) +

M

2
. (44)

Here,(a) follows from the assumption thatP is large enough such that we haveP ≥ M
KN

. Thus,

the maximum achievable multiplexing gain is

rmax = lim
P→∞

Cu(P )

log(P )
≤ M

2
. (45)

To prove the theorem, it is sufficient to show that the multiplexing gain of CBS is lower bounded
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by M
2

. To show this, we lower-bound the achievable rate of the scheme as follows:

RCBS(P ) =
1

2
EG,H

[

log

(∣
∣
∣
∣
IM +

α2

1 + α2

P

M
Λ

∣
∣
∣
∣

)]

≥ 1

2
EG,H

[

log

(∣
∣
∣
∣

α2

1 + α2

P

M
Λ

∣
∣
∣
∣

)]

≥ M

2
log(P ) +

M

2
EH [log (λmin (H))] − M

2
log(M) − M

2
EG,H

[

log

(

1 +
1

α2

)]

(a)

≥ M

2
log(P ) +

M2

2

∫ 1

x=0

e−x log(x)dx − M

2
log(M) − M

2
EG,H

[

log

(

1 +
1

α2

)]

≥ M

2
log(P ) − M2

2
− M

2
log(M) − M

2
EG,H

[

log

(

1 +
1

α2

)]

, (46)

where(a) follows from the fact thatλmin(H) ≥ λmin(W), whereW is an arbitraryM×M sub-

matrix ofH, noting thatfλmin(W)(λ) = Me−Mλ, λ > 0. Now, definingxα = EG,H

[
log
(
1 + 1

α2

)]
,

it is sufficient to show thatxα can be upper bounded by a finite expression independent ofP .

Defining xα,k = log
[
1 + λ−1

min (Gk)
(
‖Hk‖2 + 1

P

)]
, we have

xα = EG,H







log







1 +

max1≤k≤K Ex,nk

[∥
∥
∥G

†
kU

H
k rk

∥
∥
∥

2
]

P













= EG,H







max
1≤k≤K

log







1 +

Ex,nk

[∥
∥
∥G

†
kU

H
k rk

∥
∥
∥

2
]

P













(a)

≤ EG,H

[

max
1≤k≤K

log

(

1 + λ−1
min (Gk)

(

‖Hk‖2 +
1

P

))]

= EG,H

[

max
1≤k≤K

xα,k

]

(b)

≤ EG,H

[
K∑

k=1

xα,k

]

= KEG,H [xα,k] (47)

Here,(a) results from matrix product norm inequality and independency of nk from Hk andx,

and(b) follows from the fact thatxα,k’s are nonnegative i.i.d. random variables. Without loss of
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generality, we can assumeP is large enough such thatP ≥ 1. We can upper-boundE [xα,k] as

E [xα,k] = EGk,Hk

{

log

[

1 + λ−1
min (Gk)

(

‖Hk‖2 +
1

P

)]}

(a)

≤ EGk,Hk

[
log
(
1 + λmin(Gk) + ‖Hk‖2)]− EGk

[log (λmin (Gk))]

(b)

≤ EGk
[λmin(Gk)] + EHk

[
‖Hk‖2]− EGk

[log (λmin (Gk))]

(c)

≤ N + MN − M

∫ 1

x=0

e−Mx log(x)dx

≤ MN + M + N. (48)

Here,(a) follows from the assumption thatP ≥ 1, (b) follows from the fact thatlog(1 + x) ≤
x, and (c) follows from the fact thatE [λmin(Gk)] ≤ E

[
‖Gk‖2

M

]

= N , and also(a) in (46).

Comparing (46), (47), and (48), we have

RCBS (P ) ≥ M

2
log(P ) + O(1). (49)

As a result

rCBS = lim
P→∞

Cu(P )

log(P )
≥ M

2
. (50)

Comparing (45) and (50) completes the proof.

Remark -It is claimed in [1] that the proposed BNOP scheme achieves the full multiplexing

gain of M
2

, for K → ∞. However, it should be mentioned that this result is not valid for the

asymptotically large values of SNR, for any fixed number of relays. Moreover, it can easily be

shown that the interference term increases linearly with SNR, and as a result, the SINR term

is limited by a constant value for large SNR values. Therefore, the multiplexing gain of BNOP

scheme is zero for any fixed number of relays.

V. SIMULATION RESULTS

Figure 4 shows the simulation results for the achievable rate of ICBS, BNOP matched filtering

scheme [1], and the upper-bound of the capacity based on the uplink Cut-Set for varying number

of relays. The number of transmitting and receiving antennas in the relays, the transmitter, and

the receiver isM = N = 2, and the SNR isPs = Pr = 10dB. While both of the schemes

demonstrate logarithmic scaling of rate in terms ofK, we observe that there is a significant gap

between the BNOP scheme and our scheme, reflecting the gap ofO(1) in the achievable rate
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of [1]. On the other hand, the gap between ICBS and the upper-bound rapidly approaches zero

due to the termO
(

1
log(K)

)

predicted in Corollary 2.
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Fig. 4. Upper-bound of the capacity, ICBS, and BNOP matched filtering Scheme vs. number of relays in parallel MIMO relay

network

VI. CONCLUSION

A simple new scheme, Cooperative Beamforming Scheme (CBS),based on Amplify and

Forward (AF) strategy is introduced in a parallel MIMO relaynetwork. A variant of CBS,

called Incremental Cooperative Beamforming Scheme (ICBS)is shown to achieve the capacity

of parallel MIMO relay network forK → ∞. The scheme is shown to rapidly approach the

upper-bound of the capacity with a gap no more thanO
(

1
log(K)

)

. As a result, it is shown that

the capacity of a parallel MIMO relay network isC(K) = M
2

log
(
1 + KNP

M

)
+ O

(
1

log(K)

)

in

terms of the number of relays,K. Moreover, it is shown that as the number of relays increases,

the relays in ICBS can operate using much less power without any performance degradation.

Finally, the proposed scheme is shown to achieve the maximummultiplexing gain regardless of

the number of relays. The simulation results confirm the validity of the theoretical arguments.
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APPENDIX A

Proof of Lemma 2

Let us denoteWi as theith column ofW. In [23], it has been shown that

f‖Wi‖2(x) =
Γ(NK)

Γ(N)Γ(NK − N)
xN−1(1 − x)NK−N−1, i = 1, · · · , M, (51)

which corresponds to the Beta distribution with parametersN andNK−N . Therefore, we have

P
[
‖W‖2 ≥ γ

]
= P

[
M∑

i=1

‖Wi‖2 ≥ γ

]

≤ P

[

max
i

‖Wi‖2 ≥ γ

M

]

= P

[
M⋃

i=1

Fi

]

(a)

≤ MP [Fi] , (52)

where (a) results from the Union bound on the probability, andFi ≡ ‖Wi‖2 ≥ γ
M

. Defining

γ′ , γ
M

, and using (51), we obtain

P
[
‖W‖2 ≥ γ

]
≤ M

(
1 − F‖Wi‖2(γ′)

)

= M
Γ(NK)

Γ(N)Γ(NK − N)

∫ 1

γ′

xN−1(1 − x)NK−N−1dx

(a)
= M

Γ(NK)

Γ(N)Γ(NK − N)

(
γ′(N−1)(1 − γ′)NK−N

NK − N
+

1

NK − N

N−1∑

n=1

[
n∏

j=1

(N − j)

(NK − N + j)

]

γ′(N−n−1)(1 − γ′)NK−N+n

)

= M

N∑

n=1

(NK − 1)!

(N − n)!(NK − N + n − 1)!
γ′N−n(1 − γ′)NK−N+n−1

≤ M

N∑

n=1

(NKγ′)N−n(1 − γ)NK−N

(N − n)!

(b)∼ M(NKγ′)N−1(1 − γ′)NK−N

(N − 1)!

[

1 + O

(
1

Kγ′

)]

∼ O
(

(Kγ)N−1e−
γ
M

NK
)

, (53)

where(a) follows from the integration by part, and(b) follows from the fact thatKγ′ ∼ ω(1).

�
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APPENDIX B

Proof of Lemma 5

The (i, j)th entry ofAAH , denoted as[AAH ]i,j, can be written as

[AAH ]i,j = aia
H
j , (54)

whereai is the vector representing theith row of AAH . Let us defineB as

B , [bT
1 | · · · |bT

r ]T , (55)

wherebi =
ai

‖ai‖
, i = 1, · · · , r. We have

[BBH ]i,j =




1 i = j

γ(i, j) i 6= j
, (56)

whereγ(i, j) , bib
H
j =

aia
H
j

‖ai‖‖aj‖
. The pdf ofz(i, j) = |γ(i, j)|2 has been computed in [23],

Lemma 3, as

pz(i,j)(z) = (s − 1)(1 − z)s−2. (57)

Let us defineC as the event thatz(i, j) < 1√
s

for all i 6= j. Using (57), we have

P[C] = P

[
⋂

i6=j

(

z(i, j) <
1√
s

)]

(a)

≥ 1 − r(r − 1)

2

(

1 − 1√
s

)s−1

∼ 1 + O(e−
√

s), (58)

where(a) results from the Union bound on the probability, noting thatz(i, j) = z(j, i), ∀i, j.

Conditioned onC, the orthogonality defect ofB, defined as
∏r

i=1 ‖bi‖2

|BBH| , can be written as

δC(B) =
1

∣
∣BBH

∣
∣

=
1

1 + O( 1√
s
)

= 1 + O
( 1√

s

)

, (59)
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whereδC(B) denotes the orthogonality defect ofB, conditioned onC. Hence, using the fact that

the orthogonality defect ofA andB are equal, conditioned onC we can write
r∏

i=1

λi(A) =
∣
∣AAH

∣
∣

=
r∏

i=1

‖ai‖2

[

1 + O
( 1√

s

)]

, (60)

whereλi(A)’s denote the singular values ofAAH . Moreover,
r∑

i=1

λi(A) = Tr{AAH}

=
r∑

i=1

‖ai‖2. (61)

Now, let us define eventsDi as follows:

Di ≡
{
s(1 − ǫ) < ‖ai‖2 < s(1 + ǫ)

}
, i = 1, · · · , r, (62)

whereǫ ,
√

2 log(s)
s

. Since‖ai‖ =
∑s

j=1 |ai,j|2, whereai,j denotes the(i, j)th entry ofA, and

having the fact that|ai,j|2 are i.i.d. random variables with unit mean and unit variance, using

Central Limit Theorem (CLT),1
s
‖ai‖2 approaches, in probability, to a Gaussian distribution with

unit mean and variance1
s
, ass tends to infinity. More precisely, definingX ,

1
s
‖ai‖2√

1
s

and using

Theorem 5.24 in [24], we have

P

[

−
√

2 log(s) < X <
√

2 log(s)
]

= 1 −
[

1 − Φ
(√

2 log(s)
)]

exp







γ3

√
2
√

log3(s)

3σ3
√

s






−

− Φ
(

−
√

2 log(s)
)

exp






−

γ3

√
2
√

log3(s)

3σ3
√

s






+

+ O
(
s−1/2e− log(s)

)

(a)≈ 1 − 1

s
√

π log(s)



1 + O





√

log3(s)

s







+ O

(
1

s
√

s

)

,

(63)

whereΦ(.) denotes the CDF of the normal distribution, andσ2 and γ3 denote the second and

third moments of|ai,j|2, respectively.(a) follows from the approximation ofΦ(x) for largex by
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1− 1√
2πx

e−
x2

2 and the fact thatσ ∼ γ3 ∼ Θ(1). From the above equation,P[Di] can be computed

as

P[Di] = P

[

1 − ǫ <
1

s
‖ai‖2 < 1 + ǫ

]

∼ 1 + O

(

1

s
√

log(s)

)

, (64)

in which we have used the definition ofǫ which is
√

2 log(s)
s

. Conditioned onC andD, where

D ,
⋂r

i=1 Di, and using (60) and (61), we can write

η ,

∏r
i=1 λi

λ
r

=

∏r
i=1 [s(1 + O(ǫ))]

[

1 + O
(

1√
s

)]

[
1
r

∑r
i=1 s(1 + O(ǫ))

]r

= 1 + O(ǫ)

= 1 + O
(
√

log(s)

s

)

, (65)

whereλ , 1
r

∑r
i=1 λi. Suppose thatλmin = αλ (α < 1). We have

η
(a)

≤
αλ
[

1
r−1

(rλ − αλ)
]r−1

λ
r

=
α(r − α)r−1

(r − 1)r−1
, (66)

where (a) follows from the fact that knowingλmin, the product of the rest of the singular

values is maximized when they are all equal. Hence, having the sum constraint ofrλ yields
∏r

i=1 λi < αλ
[

1
r−1

(rλ − αλ)
]r−1

. Using (65), and noting thatf(α) , α(r−α)r−1

(r−1)r−1 is an increasing

function of α over the interval[0, 1], and writing the Taylor series off(α) about 1, noting

f ′(1) = 0 andf ′′(1) = −r
r−1

, we have

α(r − α)r−1

(r − 1)r−1
= 1 + O

(√

log(s)

s

)

.

⇒ r(1 − α)2

2(r − 1)
∼ O

(√

log(s)

s

)

.

⇒ α ∼ 1 + O

(

4

√

log(s)

s

)

. (67)
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In other words, conditioned onC andD, it follows thatλmin = λ

[

1 + O
(

4

√
log(s)

s

)]

. Moreover,

conditioned onD, we haveλ = s

[

1 + O
(√

log(s)
s

)]

. As a result,

P

[

λmin ∼ s

[

1 + O

(

4

√

log(s)

s

)]]

≥ P[C ∩ D]

(a)
= P[C]P[D]

(b)
= P[C] (P[Di])

r

(58),(64)∼
[

1 + O(e−
√

s)
]
[

1 + O

(

1

s
√

log(s)

)]r

∼ 1 + O
( 1

s
√

log(s)

)

, (68)

where(a) follows from the fact that the norm and direction of a Gaussian vector are independent

of each other, and as a result,C andD are independent.(b) follows from the fact thatDi’s are

independent and have the same probability.

�
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