(RF) Media-based Modulation

Amir K. Khandani
khandani@uwaterloo.ca

E&CE Department, University of Waterloo
khandani@uwaterloo.ca, 519-8851211 ext 35324
Basic Idea:
Think of Smoked Signalling

--- Message is formed outside TX antenna.
--- Message is encoded into pseudorandom channel states.
Media-based Wireless

- Keep the source shining and change the transmission medium to embed data.
Example

- Have two beams of gain **0.5 and 1.5** and have to use only one of them
 - Do not know which beam has higher gain.
- Want to form a 4 points 1-D constellation

Option 1: Select one beam at random and use a 4 PAM constellation

50% chance of constellation of having a constellation with \(d_{\text{min}} = \frac{1}{\sqrt{2}} \)

Energy spent: \(\frac{5}{4} \)
Example

- Have two beams of gain 0.5 and 1.5 and have to use only one of them. Do not know which beam has higher gain.
- Want to form a 4 points 1-D constellation

Option 2: Select one bits of information to select one of the beams, and modulate a BPSK

\[d_{\text{min}} = \sqrt{2} \]

Energy spent: \(\frac{1}{4} \) times

10 Times Energy Saving
How to Change the Channel State?

14 RF Mirrors \Rightarrow 2^{14} channel states \Rightarrow Modulate 14 bits
Examples of Antenna Patterns
Propagation Environments

Indoor Model
(residential with dry-walls)

Outdoor Model
(down-town Ottawa)
Examples of Resulting Constellations (without symmetrization)
Examples of Resulting Constellations (with symmetrization)
Some Remarks

• Rich scattering environment:
 – Slightest perturbation in the environment causes independent outcomes.

• Should not be confused with RF beam-forming using parasitic elements.
 – RF beam-forming aims at focusing energy.
 – Media-based relies on additive information over receive antennas to increase rate, and on randomness of constellation to combat slow fading.
What about line of sight
Media-based vs. (legacy) Source-based

• Main idea:
 – Embed the information in the variation of the RF channel external to the antenna.

• Benefits vs. (legacy) source-based wireless:
 • Additive information over multiple receive antennas (similar to MIMO) with the advantages of:
 – Using a single transmit antenna
 – Independence of noise over receive antennas
 • Inherent diversity over a static channel (constellation diversity) using single or multiple antenna(s)
 – Diversity improves with the number of constellation points
 – Unlike MIMO, diversity does not require sacrificing the rate
 – It essentially converts the Raleigh fading channel into an AWGN channel with the same average receive energy and with a minor loss in capacity.
Media-based: Rate

\(m: \text{Data} \)

\(m \leftrightarrow \vec{h}(m) \)

\(m = 1, \ldots, L \)

\(E | h_k(m) |^2 = 1 \)

\(\vec{y} = \vec{h}(m) + \vec{z} \)

\(E(z_k^2) = 2 \)

\(h(m), m = 1, \ldots, L : K\text{-D constellation (iid Gaussian elements)} \)

\(I(\vec{y};m) = I(\vec{y};\vec{h}(m)) = H(\vec{y}) \quad H(\vec{z}) = H(\vec{y}) \quad K \log_2(2e^2) \)
Gain due to Inherent Diversity:
Typicality of Random Constellation

Carrier of Energy E

m: Data

$m \leftrightarrow \tilde{h}(m) \quad m = 1, \ldots, L$

$m \rightarrow \tilde{N}_q \quad \tilde{Z} \quad \text{AWGN: } |z_k|^2 = 1$

$\tilde{y} = \tilde{h}(m) + \tilde{N}_q \sim \text{Gaussian}$

$I = H(\tilde{y}) - H(\tilde{N}_q + \tilde{z} | \tilde{h}) \geq K \left[\frac{1}{2} \log(2\pi e \sigma^2_Y) - E_{\tilde{c}} \left\{ \frac{1}{2} \log 2\pi e (\sigma^2_N + \sigma^2_{Nq\tilde{h}}) \right\} \right]

\geq K \left[\frac{1}{2} \log(2\pi e \sigma^2_Y) - \int_{\tilde{c} \in \mathbb{R}^Q} f_G(\tilde{c}) \frac{1}{2} \log 2\pi e (\sigma^2_N + \sigma^2_{Nq\tilde{h}}) d\tilde{h} \right]

\sigma^2_{Nq\tilde{h}} \leq \frac{L}{K} \int_{\tilde{x} \in \mathbb{R}^2} f_G(\tilde{x}) \|\tilde{x} - \tilde{h}\|^2 e^{-(L-1)P(\tilde{x},\tilde{h})} d\tilde{x}.$
Main Computational Tool

\[I \geq K \left[\frac{1}{2} \log(2\pi e \sigma_Y^2) - E_C \{ \frac{1}{2} \log 2\pi e (\sigma_N^2 + \sigma_{Nq\vec{h}}^2) \} \right] \]

\[\geq K \left[\frac{1}{2} \log(2\pi e \sigma_Y^2) - \int_{\mathcal{H}^Q} f_G(\vec{h}) \frac{1}{2} \log 2\pi e (\sigma_N^2 + \sigma_{Nq\vec{h}}^2) d\vec{h} \right] \]

\[\sigma_{Nq\vec{h}}^2 \leq \frac{L}{K} \int_{\mathcal{H}^2} f_G(\vec{x}) \| \vec{x} - \vec{h} \|^2 e^{-(L-1)p(\vec{x},\vec{h})} d\vec{x} \]

\[\approx \frac{2\Gamma(2/K + 1)}{K} \left(\frac{\Gamma(K/2 + 1)}{L} \right)^{\frac{2}{K}} e^{\frac{c^2}{Q}} = Ae^{\frac{c^2}{K}} \left(\frac{1}{L} \right)^{2/K} \]

where, \[A = \frac{2\Gamma(2/K + 1)(\Gamma(K/2 + 1))^{\frac{2}{K}}}{K} \]

As a result, \[\sigma_{Nq\vec{h}}^2 \approx \left(\frac{1}{L} \right)^{2/K} \rightarrow 0, \text{ as } L \rightarrow \infty \]
Main Conclusion of \[\sigma^2_{N_{\rho} \bar{y}} \approx \left(\frac{1}{L} \right)^{2/K} \rightarrow 0, \text{ as } L \rightarrow \infty \]

- Consider a slow Raleigh fading channel for which statistical average of the fading gain per receive antenna is one.
 - Using a single TX and \(Q \) RX antennas over such channel, mutual information averaged over different realizations of a constellation with \(L \) points approaches the capacity of \(2Q \) parallel AWGN channels, each with unit energy, as \(L \rightarrow \infty \).
Accuracy of the Computational Tool and its Simplified Version in Non-asymptotic Situations

$L=256, Q=1$ (SISO)
Main Benefit: Inherent Diversity in A Single Constellation

- Conventional methods suffer from deep fades in slow fading.
- This problem disappears as “Good and Bad” channel realizations contribute to forming the constellation.

![Graph showing mutual information vs. SNR for different TX energy levels and P(outage) values.](image)
Comparisons for the Average Rate

Approximate Gain vs. Static Rayleigh Fading (gain due to Inherent Diversity):
RX=20dB, P(outage)=0.1, TX=30dB, Gain=10dB
RX=20dB, P(outage)=0.01, TX=40dB, Gain=20dB
RX=20dB, P(outage)=0.001, TX=50dB, Gain=30dB

M=256, Q=2

Mutual Information vs. SNR

256 QAM at SNR 20dB
256 QAM at SNR 15dB
Media-based vs. Source-based

$K \times K$ MIMO

K complex Dimensions

Total signal energy: KE
Basis: **Non-orthogonal**
Complex Dimensions/sec/Hz: K

Better Performance

E/K

Basis: **Orthogonal**
Complex Dimension/sec/Hz: K

Data

E

ISIT 2014
Media-based vs. Legacy Systems: Effective Dimensionality

$1 > 2 > \ldots > K$: Eigenvalues of a $K \times K$ Wishart random matrix

$E(slope) = K$

$slope = \frac{1}{1}$

$E(\frac{1}{1}) < 4$

$slope = \frac{1}{1} + \frac{2}{2}$

$slope = \frac{1}{1} + \frac{2}{2} + \frac{3}{3}$

$slope = 1$

$slope = \frac{1}{1} + \frac{2}{2} + \frac{3}{3} + \ldots + \frac{k}{k}$

$E(\frac{1}{1} + \frac{2}{2} + \frac{3}{3} + \ldots + \frac{k}{k}) = K$

Legacy SISO
Rate = $\log(1+E)$
Selection Gain

- Select a subset of points, which, subject to uniform probabilities, maximize the mutual information.
- In practice, using the subset of points with highest energy, which maximizes the slope the rate at zero SNR, performs very well.
Media-based vs. Legacy Systems: Slope of Rate vs. SNR (dB) at SNR=0

- Legacy SISO: Slope = 1
- Legacy $K \times K$ MIMO: Maximum eigenvalue of a $K \times K$ Wishart matrix (upper limited by 4)
- $I \times K$ Media-based: K

<table>
<thead>
<tr>
<th></th>
<th>$L=1, K=2$</th>
<th>$L=1, K=4$</th>
<th>$L=1, K=8$</th>
<th>$L=1, K=\infty$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$K \times K$ MIMO</td>
<td>1.75</td>
<td>2.45</td>
<td>2.96</td>
<td>4</td>
</tr>
<tr>
<td>$I \times K$ Media-based</td>
<td>2</td>
<td>4</td>
<td>8</td>
<td>Infinity</td>
</tr>
</tbody>
</table>

- *Selection Gain* further increases the slope of media-based to: $\max \left\| c_i \right\|, i = 1, \ldots, L$
 - e.g. average slope scales as $\log(L)$ for SISO case.
Comparison with Ergodic Capacity

![Comparison with Ergodic Capacity Graphs](image-url)
Comparison with Outage Capacity
(RF) Media-based Modulation

Amir K. Khandani
khandani@uwaterloo.ca

E&CE Department, University of Waterloo
khandani@uwaterloo.ca, 519-8851211 ext 35324