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Abstract— A new structure for multi-base systems
is studied in which each user receives data from
two nearby base stations, rather than only from the
strongest one. This system can be considered as a
combination of broadcast and multi-access channels. By
taking advantages of both perspectives, an achievable
rate region for a discrete memoryless channel modeled
by Pr(y1, y2|x1, x2) is derived. In this model, x1 and x2

represent the transmitted signals by the transmitter
one and two, respectively, and y1 and y2 denote the re-
ceived signals by the receiver one and two, respectively.
In this derivation, it is assumed that each transmitter
is unaware of the data of the other transmitter, and
therefore x1 and x2 are independent. To investigate
the advantage of this scheme, an efficient signaling
method which works at a corner point of the achievable
region for multiple-antenna scenarios is developed. In
the proposed scheme, each base station only requires
the state information of the channels between the
other base station and each user. In this paper, the
signaling scheme is elaborated for the case that each
transmitter/reciever is equipped with three antennas.
It is proven that in such a scenario, the multiplexing
gain of four is achievable, which outperforms any other
conventional schemes.

I. Introduction

In conventional wireless systems, each user receives
information from one base station, which is generally the
strongest one. In this case, the performance of the system
can be dramatically deteriorated by the interference from
the other pairs of transmitters/recivers, known as co-

channel interference.
A number of research works have investigated the ef-

fect of co-channel interference in multi-input multi-output
(MIMO) multi-user systems. In [1], the capacity of system
for a group of interfering users employing single-user detec-
tion is studied. In [2], [3], multi-user detection and turbo
decoding are exploited to improve the performance of the
system, where it is assumed that all users have complete
information of their channels with the base stations. A
well-known metric to evaluate the performance of the
signaling schemes is the so-called multiplexing gain which
is defined as the ratio of the sum-rate over log(SNR)
for large signal-to-noise-ratio (SNR) values. Simulation
results indicate that the multiplexing gain of the signaling
scheme proposed in [2] is zero. In other words, the sum-

rate converges to a fixed value as SNR increases. In fact,
the un-canceled terms of co-channel interference in the
denominator of the signal-to-interference-plus-noise-ratio
(SINR) do not allow further increase in the rate. In [4],
the multiplexing gains of MIMO multiuser schemes are
investigated. Specially, it is proven that in an interference
channel with two transmitters, and two receivers, where
each of them is equipped with η antennas, the conventional
signaling schemes can achieve the maximum multiplexing
gain is η.

To mitigate the co-channel interference, the cooperation
among base stations is proposed [5]. In [5], the infinite-
capacity link among base stations is assumed which re-
duces the system to a single broadcast channel. The QR
decomposition scheme as a signaling method over MIMO
broadcast channel is applied which completely cancels the
interference. The interference cancelation is based on a
result known as dirty paper coding (DPC) due to Costa,
1983 [6]. In [7], the performance of the method proposed
in [5] is evaluated for a more practical channel model.
In [8], the idea of [5] is explored taking into account
the individual power constraints per base station and
making use of uplink–downlink duality. Cooperative base
stations in uplink is considered in [9]. By assuming a full
cooperation among base stations, the system is simplified
to a single MIMO multi-access system.

In this paper, a new signaling scheme for multi-base
systems in downlink is proposed. In this scheme, each user
receives data from two nearby base stations, rather than
only from the closest one. In this case, we can consider the
system as a set of broadcast channels (from base stations’
point of view) or a set of multi-access channels (from
users’ point of view). We benefit from both perspectives to
derive an achievable rate region for a discrete memoryless
channel modeled by Pr(y1, y2|x1, x2). In this derivation,
it is assumed that each transmitter is unaware of the
data of the other transmitter, and therefore x1 and x2

are independent. This derivation is based on a combi-
nation of two achievable regions: (i) Marton rate region
for the memoryless broadcast channels [10], [11], and (ii)
rate region for the memoryless multi-access channels [12].
By focusing on a corner point of the derived achievable
region, an efficient signalling scheme for such systems in



proposed. In the proposed scheme, each base station only
requires the state information of the channels between
the other base station and each user. In this paper, the
proposed signalling scheme is elaborated for the case that
each of the transmitters and receivers is equipped with
three antennas. It is proven that in such a scenario, the
multiplexing gain of four is achievable, which outperforms
any other conventional schemes.

II. Achievable Region

In the following, an achievable rate region for a general
discrete memoryless channel, modeled by Pr(y1, y2|x1, x2),
is derived. In the suggested rate region, the auxiliary
random variables W1 and Z1 contain information from the
transmitter one to the receivers one and two, respectively.
Similarly, the auxiliary random variables W2 and Z2 con-
tain information from the transmitter two to the receivers
two and one, respectively (see Fig. 1).
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Fig. 1. A General Discrete Memoryless Channel

Theorem 1 Consider a discrete memoryless channel

modelled by Pr(y1, y2|x1, x2). Assume that the transmitter

t, t = 1, 2, transmits data to the receiver r, r = 1, 2, with

the rate Rrt. Then, an achievable region is given by the

set of all rates in the convex closure of the quadruples

(R11, R21, R12, R22) satisfying,

R11 ≤ q11 ≤ I(Y1; W1|Z2), (1)

R21 ≤ q21 ≤ I(Y2; Z1|W2), (2)

R22 ≤ q22 ≤ I(Y2; W2|Z1), (3)

R12 ≤ q12 ≤ I(Y1; Z2|W1), (4)

R11 + R21 ≤ q11 + q21 − I(Z1; W1), (5)

R22 + R12 ≤ q22 + q12 − I(Z2; W2), (6)

q11 + q12 ≤ I(Y1; W1, Z2), (7)

q22 + q21 ≤ I(Y2; W2, Z1), (8)

for some joint distribution of Pr(w1, z1, x1, w2, z2, x2, ) =
Pr(w1, z1, x1) Pr(w2, z2, x2). In addition, by defining Rr =
Rr1 + Rr2, r = 1, 2, as the total rate of the receiver r, an

achievable rate region for R1 and R2 is given by convex

closure of all rates (R1, R2), satisfying

R1 ≤ I(Y1; Z2,W1), R2 ≤ I(Y2; Z1,W2)

R1 + R2 ≤ I(Y1; Z2,W1) + I(Y2; Z1,W2)

−I(Z1; W1)− I(Z2; W2)

for some joint distribution as in the first part.

Proof: Fix Pr(w1, z1, x1, w2, z2, x2, ) =
Pr(w1, z1, x1) Pr(w2, z2, x2).

Random Encoding for the Transmitter One: Generate
2nq11 i.i.d. sequences wn

1 ∈ An
ε according to the uniform

distribution over An
ε (W1), where An

ε (W1) denotes the typ-
ical set for the random variable Zn

1 . Label the selected
i.i.d. sequences as wn

1 (k1), k1 = 1, . . . , 2nq11 . Similarly,
generate 2nq21 i.i.d. sequences zn

1 ∈ An
ε according to the

uniform distribution over An
ε (Z1), where An

ε (Z1) denotes
the typical set for the random variable Zn

1 . Label the
selected i.i.d. sequences as zn

1 (l1), l1 = 1, . . . , 2nq21 . For
i1 ∈ [1, 2nR11 ] and j1 ∈ [1, 2nR21 ], define the cells

B
(1)
i1

=
{

wn
1 (k1) :

k1 ∈ [(i1 − 1)2n(q11−R11) + 1, i12n(q11−R11)+1]
}

,

C
(1)
j1

=
{

zn
1 (l1) :

l1 ∈ [(j1 − 1)2n(q21−R21) + 1, j12n(q21−R21)+1]
}

,

D
(1)
i1j1

=
{

(wn
1 (k1), zn

1 (l1)) :

wn
1 (k1) ∈ B1

i1
, zn

1 (l1) ∈ C1
j1

, (wn
1 (k1), zn

1 (l1)) ∈ An
ε

}
.

To send a message pair (i1, j1), choose one pair

(wn
1 (k1), zn

1 (l1)) from D
(1)
i1j1

, and find an xn
1 (i1, j1) that is

jointly typical with that pair.
Random Encoding for the Transmitter Two: Similarly,

for the user two, generate w2(k2) for 1 ≤ k2 ≤ 2nq22 ,

z2(l2) for 1 ≤ l2 ≤ 2nq12 , and cells B
(2)
i2

, C
(2)
j2

, D
(2)
i2j2

, for

1 ≤ i2 ≤ 2nR22 , and 1 ≤ j2 ≤ 2nR12 . For message pair
(i2, j2), choose one pair (wn

2 (k2), zn
2 (l2)) from D

(2)
i2j2

, and
find an xn

2 (i2, j2) that is jointly typical with that pair.
Decoding: Receiver one finds the unique indices pair

(k1, l2) such that (wn
1 (k1), zn

2 (l2), yn
1 ) ∈ An

ε . Similarly,
receiver two finds the unique indices pair (k2, l1) such that
(wn

2 (k2), zn
1 (l1), yn

2 ) ∈ An
ε .

Using the above random coding scheme, we can prove
that the average probability of error converges to zero as
n −→∞, if inequalities (1) to (8) are satisfied. The second
part of the theorem is derived directly from the first part.

A. A Corner Point

To show the advantages of this scheme, we focus on one
of the corner points of the achievable region for the rate
vector (R11, R12, R21, R22), for a fixed joint probability on
inputs and auxiliary random variables. To this end, we
choose for R11 and R22 the maximum possible values, i.e.

R11 = I(Y1; W1|Z2), (9)

R22 = I(Y2; W2|Z1). (10)

With these choices of R11 and R22, we can show that the
maximum possible values for R12 and R21 are equal to,

R12 = I(Y1; Z2)− I(Z2; W2), (11)

R21 = I(Y2; Z1)− I(Z1; W1). (12)



Here, we investigate the rates of the data received by the
user 1, i.e. R11 and R12. Equation (9) implies that to
achieve the highest rate for W1, receiver one first decodes
Z2, and then W1. The formula obtained for R12 is basically
the same as that of the rate of the channel with non-
causally known i.i.d. state at the transmitter, derived by
Gelfand-Pinsker [13]. In fact, if the transmitter two first
chooses a codeword for W2, its interference over Z2 at
the receiver one terminal is non-causally known by the
transmitter, and therefore rate of (11) is achievable. For
the special case of additive white Gaussian noise, with
Gaussian distribution for auxiliary random variables W2

and Z1, equation (11) implies that the interference of W2

over Z1 at the receiver one terminal can be effectively
canceled out [6]. This result is known as the dirty paper

coding, due to Costa [6].

The above observation leads us to a signaling scheme
which is elaborated for MIMO scenarios in the next sec-
tion.

III. Signaling Method for MIMO Systems

Consider a MIMO multi-base system with the base
stations t, t = 1, 2, as the transmitters and the users r,
r = 1, 2 as the receivers. As an example, here we focus on
a case where each base station t is equipped with Mt = 3
antennas, and similarly each user r, r = 1, 2, is equipped
with Nr = 3 antennas. However, the proposed scenario can
be generalized to the case of different number of antennas.
Assuming flat fading environment, the channel between
the base station t and the user r is represented by the
channel matrix Hrt, where Hrt ∈ C3×3. The received
vector yr ∈ C3×1 by user r, r = 1, 2, is given by,

y1 = H11x1 + H12x2 + n1, (13)

y2 = H21x1 + H22x2 + n2, (14)

where xt ∈ C3×1 represents the transmitted vector by the
base station t. The vector nr ∈ C3×1 is a white Gaussian
noise with zero mean and identity covariance matrix. It is
assumed that E(xtx

†
t) ≤ P , for t = 1, 2.

In the proposed scenario, each base station transmits
two data streams. The base station t sends the data
stream d1,t to the user 1 and the data stream d2,t to the
user 2. The transmitted vectors are equal to the linear
superposition of the modulation vectors with drt, t, r =
1, 2, as the coefficients, i.e.

x1 = d11v11 + d21v21, (15)

x2 = d12v12 + d22v22, (16)

where the unit vectors vrt ∈ C3×1, r, t = 1, 2, denote the
modulation vectors. The power of prt is allocated to the
data stream drt.

As mentioned in the previous section, the interference
of d11 over d21, and the interference of d22 over d12 are
canceled out based on the dirty-paper-coding theorem.

Motivated by the proof of the dirty-paper-coding theorem
in [6], we embed data in d̂21 and d̂12, where

d21 = d̂21 − α2(v†
21H

†

21H21v21)−1v†
21H

†

21H21v11d11

d12 = d̂12 − α1(v†
12H

†

12H12v12)−1v†
12H

†

12H12v22d22

α1 = p12

(
p12 + (v†

12H
†

12H12v12)−1
)−1

,

α2 = p21

(
p21 + (v†

21H
†

21H21v21)−1
)−1

,

where (.)† denotes transpose conjugate operation. H21 and
H12 are defined later in (20) and (26).

As mentioned, at the receiver side, the successive decod-
ing (SD) scheme is employed. The structure of the receiver
is as follows: first, user 1 decodes d̂12 and subtracts its
effect from the received vector y1. Then, d11 is decoded.
Similarly, user 2 first decodes d̂21 and subtracts its effect
from y2, then decodes d22. The details of the detection are
depicted in Fig. 2. To decode d̂12 at the user 1 terminal, the
signals received from base station 1 , i.e. d11 and d21, are
treated as interference. The proposed precoding scheme is
such that the data stream d22 has no interference on the

data stream d̂12. The filter Ψ12 = R
− 1

2

12 is used to whiten
the interference plus noise H11(v11d11 +v21d21)+n1 with
the variance matrix R12,

R12 =

H11[v11 v21]

[
p11 0
0 p21

]
[v11 v21]†H†

11 + I.(17)

This formula is based on the result in [6] which implies d11

and d21 are independent.

The output of Ψ12 is passed through the filter u12 which
maximizes the effective SINR. The design of the precoding
and the filter u12 will be explained later. Here, the user one
decodes d̂12 and then subtracts its effect from the received
signal y1, i.e.

ỹ1 = y1 −H12v12d̂12

= Q1H12v22d22 + H11v11d11 + H12v12d12

where,

Q1 = I−H12v12α1(v†
12H

†

12H12v12)−1v†
12H

†

12Ψ12

In the next step, the user one decodes d11 from ỹ1. First,
the filter Ψ11 is used to whiten the interference of d22 over
d11. Note that the data stream d21 has no interference
over d11 due to the precoding at the transmitter. The
interference plus noise is equal to Q1H12v22d22 + n1 with
the covariance matrix R11 = Q1H12v22p22v

†
22H

†
12Q

†
1 + I.

Then, the whitening filter is equal to Ψ11 = R
− 1

2

11 . The
output of the whitening filter Ψ11 is passed through the
filter u†

11 which maximizes the SNR of the data stream
d11. Similarly, for the user 2, there are two whitening filters



Ψ21 = R
− 1

2

21 and Ψ22 = R
− 1

2

21 where,

R21 = H22[v12 v22]

[
p12 0
0 p22

]
[v12 v22]†H†

22 + I

R22 = Q2H21v11p11v
†
11H

†
21Q

†
2 + I,

Q2 = I−H21v21α2(v†
21H

†

21H21v21)−1v†
21H

†

21Ψ21

Similarly, at the user two terminal, u†
21 and u†

22 are used
to detect d21 and d22, respectively. Figure 2 shows some
more details.

In what follows, we explain the derivation of the modu-
lation vectors vrt and the demodulation vectors urt, r, t =
1, 2. To this end, we consider the second perspective of the
system as a set of two broadcast channels. As depicted in
Fig. 2, the following MIMO broadcast channel is viewed
from the base station one,

ŷ1 = H11x1 + n̂1, (18)

y̌2 = H21x1 + ň2, (19)

where n̂1 and ň2 are whitened noise terms and

H11 = Ψ11H11, (20)

H21 = Ψ21H21. (21)

For signaling, we apply the scheme proposed in [14] for
the MIMO broadcast systems with multiple receive anten-
nas. According to [14], the modulation vector v11 is equal
to the optimizing vector of the following maximization
problem,

σ2
11 = max

s
s†H

†

11H11s, (22)

s.t. s†s = 1

where σ11 is the gain of the equivalent single-antenna chan-
nel on which the data stream d11 is sent. The demodulation
vector u11 is given by u11 = H11v11

σ11

.

v21 is the optimizing vector of the following maximiza-
tion problem,

σ2
21 = max

s
s†H

†

21H21s, (23)

s.t. s†s = 1, v†
11s = 0

where σ21 is the gain of the equivalent channel on which
the data stream d21 is sent. The demodulation vector u21

is given by u21 = H21v21

σ21

. As shown in [14], by using
this scheme, the data stream d21 has no interference over
the data stream d11. As mentioned, knowing the selected
codeword for data stream d11, the base station one can
effectively cancel out the interference of the data stream
d11 over d21 based on the dirty-paper coding theorem.
Consequently, the broadcast channel is reduced to a set
of two parallel channels with gains σ11 and σ21. Water-
filling is applied to optimally allocate the powers p11 and
p21 to the data streams d11 and d21, respectively, where
p11 + p21 ≤ P .

Similarly, from the base station 2, we have a MIMO
broadcast channel modeled by

y̌1 = H12x2 + ň1, (24)

ŷ2 = H22x2 + n̂2, (25)

where ň1 and n̂2 are whitened noises and

H12 = Ψ12H12 (26)

H22 = Ψ22H22. (27)

Here, we apply the same algorithm to derive the modu-
lation and demodulation vectors for the base station 2.
v22 is equal to the optimizing vector of the following
maximization problem

σ2
22 = max

s
s†H

†

22H22s,

s.t. s†s = 1

and u22 = H22v22

σ22

. In addition, v12 is equal to the
optimizing vector in the following problem

σ2
12 = max

s
s†H

†

12H12s,

s.t. s†s = 1, v†
22s = 0

and u12 = H12v12

σ12

. Similar to the first base station, d12 has
no interference over d22. Selecting the codeword for d22,
the transmitter two can effectively cancel its interference
over d12, using the dirty paper coding. Water-filling is used
to optimally divide the total power P between p12 and p22.
At the end, this method reduces the system to four parallel
channels with the channel gains σrt, r, t = 1, 2. Therefore,
the sum-rate of the proposed scheme is obtained by,

RSum−Rate =

2∑

r=1

2∑

t=1

log2(1 + σ2
rtprt). (28)

Note that to compute v11 and v12 in (22) and (23),
v21 and v22 are needed (Ψ11 and Ψ21 are functions of v21

and v22) and vise versa. To derive the modulation vectors,
we can initialize vrt, r, t = 1, 2, randomly, and iteratively
follow (22) to (28), until the resulting vectors converge.
Simulation results show that the algorithm converges very
fast.

IV. Performance Analysis

Although finding the optimal power allocation is
straight-forward, to simplify the analysis, we assume that
each base station divides the total power equally between
data streams, i.e. prt = P/2, t, r = 1, 2. In this case,
we have, R11 = P

2 Q1H12v22v
†
22H

†
12Q

†
1 + I. Let δ1 =

|Q1H12v22| and v22 = Q1H12v22

|Q1H12v22|
. Consider the unit

vectors ν1 and ν2 such that [v22,ν1,ν2] forms a unitary
matrix. Then, we can show that,

H11 =




1√
P

2
δ2

1
+1

0 0

0 1 0
0 0 1







v†
22

ν
†
1

ν
†
2


H11. (29)
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Fig. 2. Block Diagram of the Proposed Precoding and Detection Schemes

In high SNR, 1√
P

2
δ2

1
+1
→ 0. Thus, we have H11 =

[0 ν1 ν2]†H11. Regarding (22), σ11 is equal to the max-
imum singular value of H11, which is a rank 2 ma-
trix for large SNR. Therefore, σ11 converges to a non-
vanishing positive constant. Similar statements are valid
for σ22. Consequently, each of the data streams d11 and
d22 achieves multiplexing gain of one. Now, we investigate
the multiplexing gain of the data streams d12 and d21. Let
p11 = p21 = P

2 . From (17), we have

R12 = P
2 H11[v11 v21][v11 v21]†H†

11 + I.

Applying the SVD decomposition, we have
H11[v11 v21][v11 v21]†H†

11 = λ2
1$1$

†
1 + λ2

2$2$
†
2,

where λ1, λ2 ≥ 0, and $1 and $2 are two unit
orthogonal vectors. Consider $3 such that the matrix
[$1,$2,$3] forms a unitary matrix, then we can show
that

H12 =




1√
P

2
λ2

1
+1

0 0

0 1√
P

2
λ2

2
+1

0

0 0 1







$
†
1

$
†
2

$
†
3


H12. (30)

As it is shown in [14], σ12 in (23) is equal to the maximum

singular value of H12, where H12 = H12[ϕ1,ϕ2], and
ϕ1 and ϕ2 are two unit vectors such that [v11,ϕ1,ϕ2]
forms a unitary matrix. In high SNR, 1√

P

2
λ2

1
+1
→ 0 and

1√
P

2
λ2

2
+1
→ 0. Consequently, H12 converges to a matrix

with rank one. Therefore, σ21, defined in (23), converges
to non-vanishing positive number. Thus, the data stream
d21 archives multiplexing gain of one. Similar statements
are valid for d12.

Theorem 2 In a MIMO system with two transmitters and

two receivers, each of them equipped with three antennas,

the proposed scheme achieves multiplexing gain of four.

As mentioned, if we apply conventional schemes for
this system, the maximum achievable multiplexing gain is
three [4]. The above result clearly shows the advantage of

the proposed scheme. Note that in this scheme, the signals
of the transmitter one and two are uncorrelated. In fact,
the only information which has to be shared between the
base stations are all the channel matrices.
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